
Path-Sensitive Resource Analysis
Compliant with Assertions

Duc-Hiep CHU and Joxan JAFFAR

National University of Singapore (NUS)

1 Oct 2013

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 1 / 23



OUTLINE

1 Problem definition

2 We need both path-sensitivity and assertions

3 Path-sensitivity and assertions don’t mix

4 Our solution

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 2 / 23



Analysis of Worst-Case Resource Usage

Important for designing real-time and embedded systems
cumulative resource (e.g., timing)
non-cumulative resource (e.g., memory high-water mark)

Extremely hard due to the requirement of high precision

Redeeming factors:
Loops/recursions are statically bounded
The users/certifiers are willing to help

We restrict the presentation to WCET (or timing) analysis
Results are extensible to non-cumulative resource

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 3 / 23



Architecture of A Traditional WCET Analyzer

Executable 
Programs 

CFG Builder 

Loop 
Transforma<on 

Intermediate 
Files 

Low-level 
Analysis ILP Generator 

LP‐Solver 

Loop bounds 

Infeasible paths 

WCET 

Path Analysis 

User informa<on 

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 4 / 23



Implicit Path Enumeration Technique (IPET)

Introduced by Li and Malik [1995]

Employs Integer Linear Programming (ILP)

Simple, elegant, fast, but path-insensitive

Supports user information

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 5 / 23



Example: IPET

c1 = 0, c2 = 0, c3 = 0;
i = 0, t = 0;
while (i < 9) {

if (*) {B1: c1++; t += 10; }
else {

if (i == 1) {B2: c2++; t += 5; }
else {B3: c3++; t += 1; }

}
i++;
assert(c1 <= 4);

}

maximize(10 · c1 + 5 · c2 + 1 · c3) wrt. c1 + c2 + c3 ≤ 9 ∧ c1 ≤ 4 ∧ c2 ≤ 1

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 6 / 23



Example: IPET

	  
 	  

	  
 	  10	  

5	  
1	  

	  
 	  

c1 
c2 

c3 

maximize(10 · c1 + 5 · c2 + 1 · c3) wrt. c1 + c2 + c3 ≤ 9 ∧ c1 ≤ 4 ∧ c2 ≤ 1

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 7 / 23



Manual Annotations in IPET

Annotating loop bounds (e.g., c1 + c2 + c3 ≤ 9)
Is mandatory to produce a bound
Precision depends on the precision of given loop bounds
Automation: some simple form of loop bound analysis
(However, precision can be affected due to complicated loops)

Annotating infeasible paths (e.g., c2 ≤ 1)
Fundamentally hard due to the exponential number of infeasible paths
Automation: usually ad-hoc (e.g., detecting simple conflict patterns)

Annotating other user information (e.g., c1 ≤ 4)
Information that is too hard to automatically extract from the code
Additional information the users know, but not in the code
Via the use of what we shall call assertions

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 8 / 23



Manual Annotations in IPET

Annotating loop bounds (e.g., c1 + c2 + c3 ≤ 9)
Is mandatory to produce a bound
Precision depends on the precision of given loop bounds
Automation: some simple form of loop bound analysis
(However, precision can be affected due to complicated loops)

Annotating infeasible paths (e.g., c2 ≤ 1)
Fundamentally hard due to the exponential number of infeasible paths
Automation: usually ad-hoc (e.g., detecting simple conflict patterns)

Annotating other user information (e.g., c1 ≤ 4)
Information that is too hard to automatically extract from the code
Additional information the users know, but not in the code
Via the use of what we shall call assertions

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 8 / 23



Manual Annotations in IPET

Annotating loop bounds (e.g., c1 + c2 + c3 ≤ 9)
Is mandatory to produce a bound
Precision depends on the precision of given loop bounds
Automation: some simple form of loop bound analysis
(However, precision can be affected due to complicated loops)

Annotating infeasible paths (e.g., c2 ≤ 1)
Fundamentally hard due to the exponential number of infeasible paths
Automation: usually ad-hoc (e.g., detecting simple conflict patterns)

Annotating other user information (e.g., c1 ≤ 4)
Information that is too hard to automatically extract from the code
Additional information the users know, but not in the code
Via the use of what we shall call assertions

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 8 / 23



Our Proposed Framework

Executable 
Programs 

CFG Builder 

Loop 
Transforma<on 

Intermediate 
Files 

Low-level 
Analysis 

Symbolic 
Execu<on 

WCET 

Path Analysis 

User informa<on 

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 9 / 23



The Need for Assertions

The analysis precision could highly depend on the inputs and the
programmer knows about the input set (i.e., the environment where
the program is run)

Making use of such user information can be crucial

c = c1 = 0;
t = 0;
for (i = 0; i < 100; i++) {

c++;
if (A[i] != 0) {

c1++;
t += 1000;

} else { t += 1; }
}
assert(c1 <= c / 10);

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 10 / 23



The Need for Local Assertions

Consider bubblesort, input a[] contains element in [min,max ]

User information: there are M elements equal to max

Local assertion (counter c is reset) is easier to derive

IPET does not support local assertions

c = 0; t = 0;
for (i = N-1; i >= 1; i--) {

c = 0;
for (j = 0; j <= i-1; j++)

if (a[j] > a[j+1]) {
c++;
t += 100; tp = a[j];
a[j] = a[j+1]; a[j+1] = tp;

} else { t += 1; }
assert(c <= N-M);

}}

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 11 / 23



The Need for Path-sensitivity

Path-sensitivity is necessary for precision too
(i.e., assertions only will not be sufficient)

c = c1 = c2 = 0;
t = i = 0;
while (i < 10) {

c++;
if (i mod 3 == 0) {

c1++; i *= i; t += 30;
} else { c2++; t += 1; }
i++;
assert(???);

}

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 12 / 23



Path-sensitivity and Assertions Together

User needs to provide less information (e.g., c1 ≤ 4)

The rest the system can automatically figure out (e.g.,
c1 + c2 + c3 ≤ 9 and c2 ≤ 1)

c1 = c2 = c3 = 0;
i = 0, t = 0;
while (i < 9) {

if (*) {B1: c1++; t += 10; }
else {

if (i == 1) {B2: c2++; t += 5; }
else {B3: c3++; t += 1; }

}
i++;
assert(c1 <= 4);

}

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 13 / 23



How Do We Achieve Path-sensitivity?

We can afford path-sensitivity, but up to loops only
(Chu and Jaffar [2011])

We perform symbolic execution where loops are unrolled
Scalability is achieved by (1) performing abstraction after each loop
iteration (i.e., contexts are merged); (2) summarizing with
interpolation for reuse
Note that (1) is inevitable for any unrolling technique

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 14 / 23



Loop Unrolling and Assertions Don’t Mix

c = 0;
i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

Attempt 1: Perform context merge at the end of each loop iteration

Information about c is lost
The provided assertion will never be fired
Worst-case bound: 90 (block B1 is executed 9 times)

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 15 / 23



Loop Unrolling and Assertions Don’t Mix

c = 0;
i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

Attempt 2: Try under-approximation by keeping the context of c
from the worst-case path

Worst-case bound: 10 + 10 + 10 + 10 + 1 + 1 + 1 + 1 + 1 = 45
This bound is unsound
Counter-example:

Replace “if (*)” with “if prime(i)”
The timing: 1 + 5 + 10 + 10 + 1 + 10 + 1 + 10 + 1 = 49

Reason: when the assertion starts to kick in, block B2 is no longer
available for execution (due to greedy treatment)

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 16 / 23



Loop Unrolling and Assertions Don’t Mix

c = 0;
i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

Attempt 2: Try under-approximation by keeping the context of c
from the worst-case path

Worst-case bound: 10 + 10 + 10 + 10 + 1 + 1 + 1 + 1 + 1 = 45
This bound is unsound
Counter-example:

Replace “if (*)” with “if prime(i)”
The timing: 1 + 5 + 10 + 10 + 1 + 10 + 1 + 10 + 1 = 49

Reason: when the assertion starts to kick in, block B2 is no longer
available for execution (due to greedy treatment)

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 16 / 23



Loop Unrolling and Assertions Don’t Mix

c = 0;
i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

Attempt 2: Try under-approximation by keeping the context of c
from the worst-case path

Worst-case bound: 10 + 10 + 10 + 10 + 1 + 1 + 1 + 1 + 1 = 45
This bound is unsound
Counter-example:

Replace “if (*)” with “if prime(i)”
The timing: 1 + 5 + 10 + 10 + 1 + 10 + 1 + 10 + 1 = 49

Reason: when the assertion starts to kick in, block B2 is no longer
available for execution (due to greedy treatment)

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 16 / 23



Loop Unrolling and Assertions Don’t Mix

Fundamentally, “Being compliant with assertions” requires the
analysis to be fully path-sensitive wrt. assertion variables

This interferes with greedy treatment of loops (merge & summarize)

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 17 / 23



Loop Unrolling and Assertions Don’t Mix

Fundamentally, “Being compliant with assertions” requires the
analysis to be fully path-sensitive wrt. assertion variables

This interferes with greedy treatment of loops (merge & summarize)

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 17 / 23



Solution: A Two-Phase Algorithm (for each loop)

Phase 1:
Perform loop unrolling with iteration abstraction and interpolation
Eliminate two kinds of paths:

Infeasible paths (detected from path-sensitivity)
Dominated paths. (1) We track frequency variables which will be used
later in some assertion. (2) For paths which modify the tracked
variables in the same way, we keep the one whose resource usage
dominates the rest

Phase 2:
Disregard all paths violating the assertions
Employ a dynamic programming approach with interpolation for DAG

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 18 / 23



Solution: A Two-Phase Algorithm (for each loop)

Phase 1:
Perform loop unrolling with iteration abstraction and interpolation
Eliminate two kinds of paths:

Infeasible paths (detected from path-sensitivity)
Dominated paths. (1) We track frequency variables which will be used
later in some assertion. (2) For paths which modify the tracked
variables in the same way, we keep the one whose resource usage
dominates the rest

Phase 2:
Disregard all paths violating the assertions
Employ a dynamic programming approach with interpolation for DAG

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 18 / 23



Phase 1: Removal of Infeasible Paths

c = 0; i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else { if (i == 1) {B2: t += 5; } else {B3: t += 1; }}
i++;
assert(c <= 4);

}

First iteration: remove the path executing B2 〈0〉 〈1〉

c := c + 1 ∧ t := t + 10

t := t + 1

Second iteration: remove the path executing B3 〈1〉 〈2〉

c := c + 1 ∧ t := t + 10

t := t + 5

Other iterations, i.e., i = 2..8: reuse the analysis of the first iteration

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 19 / 23



Phase 1: Removal of Dominated Paths

c = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (*) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

Notice the change from if (i == 1) to if (*)

All iterations, i.e., i = 0..8 (remove the path executing B3):

〈i〉 〈i+1〉

c := c + 1 ∧ t := t + 10

t := t + 5

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 20 / 23



Phase 2: An Instance of the RCSP

Phase 2 finds the longest path in the DAG produced by Phase 1, now
taking into account the provided assertion(s)

In this example, the number of contexts for counter c is linear, a
simple dynamic programming algorithm would suffice

In general, when loops are nested and the number of interested
counters is more than 1, it is an instance of the Resource Constrained
Shortest Path (RCSP) problem

RCSP can be addressed efficiently, also by using interpolation
technique (Jaffar et al. [2008])

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 21 / 23



Experiments

Benchmark LOC Path-Sensitive Path-Insensitive
(Symbolic execution w. loop unrolling) (IPET)
w.o. Assertions w. Assertions w.o. As w. As

Bound T(s) Bound T(s)
sparse array < 100 110404 1.50 10404 3.48 110404 10404
bubblesort100 < 100 515398 5.52 49798 11.45 1019902 1019902
watermark < 100 1010 1.74 20 5.45 * *
conflict100 < 100 1504 3.47 759 9.22 1504 1129
insertsort100 < 100 515794 4.91 30802 7.78 1020804 1020804
crc 128 1404 7.73 1084 8.61 1404 1084
expint 157 15709 4.40 859 4.56 - -
matmult100 163 3080505 4.55 131705 5.54 3080505 131705
fir 276 1129 2.35 793 2.39 - -
fft64 219 7933 5.52 1733 6.04 - -
tcas 400 159 3.84 81 3.9 172 94
statemate 1276 2103 9.65 1103 9.73 2271 1271
nsichneu small 2334 483 9.43 383 9.51 2559 2459

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 22 / 23



Conclusion

Precision of path analysis comes from two sources:
Path-sensitivity via symbolic simulation
User assertions to limit possible execution traces

Symbolic simulation while compliant with assertions is not trivial

We resolve the scalability issue by a two phase algorithm, of which
the key is to make use of interpolation concept for reuse

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 23 / 23



D. H. Chu and J. Jaffar. Symbolic simulation on complicated loops for
wcet path analysis. In EMSOFT, 2011.

J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for dynamic
programming with ad-hoc constraints. In AAAI, 2008.

Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In DAC, 1995.

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 24 / 23



Questions & Answers

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 24 / 23



Interpolation for Reuse

A and B share the same program point
A does not subsume B
Generalize the context of A to Ā, aka an interpolant, while preserving
the infeasible paths
B is subsumed by Ā
The summarized analysis of A can be safely reused in B

BBA

Ā

re-use

SUBSUMED

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 25 / 23



Example: Interpolation for Reuse

〈0〉 t = 0;
〈1〉 if (*)
〈2〉 t++;

else
〈3〉 t += 2;
〈4〉 if (*)
〈5〉 t++;

else
〈6〉 t += 2;
〈7〉

〈0〉

〈1〉

t = 0;

〈2〉 〈3〉

〈4〉

t++;

(*) (*)

〈5〉 〈6〉

〈7〉

t++;

(*) (*)

〈4〉

t += 2;

〈7〉

t += 2;

true

subsumed

true

true

true

true

true

tf ≤ tc + 1 tf ≤ tc + 2

tf ≤ tc + 2

tf ≤ tc + 3 tf ≤ tc + 4

tf ≤ tc + 4

tf ≤ tc + 2

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 26 / 23



Interpolation for Reuse (with loop)

re-use

path merging

path merging

summarize
one iteration

reuse in
later iteration

summarize
one iteration

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 27 / 23



Phase 2: An Instance of the RCSP

...

...
...

...

〈〈2〉-0〉

〈〈2〉-1〉

〈〈2〉-2〉

〈〈2〉-3〉

〈〈2〉-2〉

〈〈2〉-1〉

(c = 0, t = 0)

(c = 1, t = 10) (c = 0, t = 1)

(c = 1, t = 15)(c = 2, t = 20)

(c = 2, t = 21) (c = 2, t = 25)

(c = 1, t = 11)

c++

t+=10

c++

t+=10

c++

t+=10

t+=1

t+=5 t+=5

t+=1
t+=1

〈〈2〉-3〉

〈〈2〉-2〉

c++

t+=10

Reused
Reused

c++

t+=10

EMSOFT’13 Path-Sensitive Resource Analysis Compliant with Assertions 1 Oct 2013 28 / 23


	Problem definition
	We need both path-sensitivity and assertions
	Path-sensitivity and assertions don't mix
	Our solution
	Appendix

