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Abstract. We address the problem of reasoning about interleavings in
safety verification of concurrent programs. In the literature, there are two
prominent techniques for pruning the search space. First, there are well-
investigated trace-based methods, collectively known as “Partial Order
Reduction (POR)”, which operate by weakening the concept of a trace by
abstracting the total order of its transitions into a partial order. Second,
there is state-based interpolation where a collection of formulas can be
generalized by taking into account the property to be verified. Our main
contribution is a framework that synergistically combines POR with state
interpolation so that the sum is more than its parts.

1 Introduction

We consider the state explosion problem in safety verification of concurrent pro-
grams. This is caused by the interleavings of transitions from different processes.
In explicit-state model checking, a general approach to counter this explosion is
Partial Order Reduction (POR) (e.g., [21, 18, 10]). This exploits the equivalence
of interleavings of “independent” transitions: two transitions are independent if
their consecutive occurrences in a trace can be swapped without changing the
final state. In other words, POR-related methods prune away redundant process
interleavings in a sense that, for each Mazurkiewicz [16]1 trace equivalence class
of interleavings, if a representative has been checked, the remaining ones are
regarded as redundant.

On the other hand, symbolic execution [15] is another method for program
reasoning which recently has made increasing impact on software engineering
research [4]. The main challenge for symbolic execution is the exponential num-
ber of symbolic paths. The works [13, 17] tackle successfully this fundamental
problem by eliminating from the concrete model, on-the-fly, those facts which
are irrelevant or too-specific for proving the unreachability of the error nodes.
This learning phase consists of computing state-based interpolants in a similar
spirit to that of conflict clause learning in SAT solvers.

1 We remark that the concept of POR goes beyond the preservation of Mazurkiewicz
traces, e.g., [21]. However, from a practical perspective, it is safe to consider such
form of pruning as a representative example of POR.



Now symbolic execution with state interpolation (SI) has been shown to be
effective for verifying sequential programs. In SI [13, 17], a node at program
point ` in the reachability tree can be pruned, if its context is subsumed by the
interpolant computed earlier for the same program point `. Therefore, even in
the best case scenario, the number of states explored by an SI method must still
be at least the number of all distinct program points2. However, in the setting of
concurrent programs, exploring each distinct global program point3 once might
already be considered prohibitive. In short, symbolic execution with SI alone is
not efficient enough for the verification of concurrent programs.

Recent work (e.g., [26]) has shown the usefulness of going stateful in imple-
menting a POR method. It directly follows that SI can help to yield even better
performance. In order to implement an efficient stateful algorithm, we are re-
quired to come up with an abstraction for each (concrete or symbolic) state.
Unsurprisingly, SI often offers us good abstractions.

The above suggests that POR and SI can be very much complementary to
each other. In this paper, we propose a general framework employing symbolic
execution in the exploration of the state space, while both POR and SI are ex-
ploited for pruning. SI and POR are combined synergistically as the concept of
interpolation. Interpolation is essentially a form of learning where the completed
search of a safe subtree is then formulated as a recipe, ideally a succinct formula,
for future pruning. The key distinction of our interpolation framework is that
each recipe discovered by a node is forced to be conveyed back to its ancestors,
which gives rise to pruning of larger subtrees.

In summary, we address the challenge: “combining classic POR methods with
symbolic technique has proven to be difficult” [14], especially in the context
of software verification. More specifically, we propose an algorithm schema to
combine synergistically POR with state interpolation so that the sum is more
than its parts. However, we first need to formalize POR wrt. a symbolic search
framework with abstraction in such a way that: (1) POR can be property driven
and (2) POR, or more precisely, the concept of persistent set, can be applicable
for a set of states (rather than an individual state). While the main contribution
is a theoretical framework, our experimental results also indicate a potential for
the development of advanced implementations.

2 Related Work

Partial Order Reduction (POR) is a well-investigated technique in model check-
ing of concurrent systems. Some notable early works are [21, 18, 10]. Later re-
finements of POR, Dynamic [9] and Cartesian [12] POR (DPOR and CPOR re-
spectively) improve traditional POR techniques by detecting collisions on-the-fly.

2 Whereas POR-related methods do not suffer from this. Here we assume that the
input concurrent program has already been preprocessed (e.g., by static slicing to
remove irrelevant transitions, or by static block encodings) to reduce the size of the
transition system for each process.

3 The number of global points is the product of the numbers of local program points
in all processes.



Recently, [1] has proposed the novel concept of source sets, optimizing the imple-
mentation for DPOR. These methods, in general, often achieve better reduction
than traditional techniques, due to the more accurate detection of independent
transitions.

Traditional POR techniques [21, 18, 10] distinguish between liveness and safety
properties. POR has also been extended for symbolic model checking [2] where a
symbolic state can represent a number of concrete states. These methods, how-
ever, are not applicable to safety verification of modern concurrent programs
(written in mainstream APIs such as POSIX). One important weakness of tra-
ditional POR is that it is not sensitive wrt. different target safety properties. In
contrast, recent works have shown that property-aware reduction can be achieved
by symbolic methods using a general-purpose SAT/SMT solver [25, 14, 23, 6]. Ver-
ification is often encoded as a formula which is satisfiable iff there exists an
interleaving execution of the programs that violates the property. Reductions
happen inside the SAT solver through the addition of learned clauses derived by
conflict analysis [19]. This type of reduction is somewhat similar to what we call
state interpolation.

An important related work is [14], which is the first to consider enhancing
POR with property driven pruning, via the use of an SMT solver. Subsequently,
there is a follow-up work [23]. In [14], they begin with an SMT encoding of the
underlying transition system, and then enhance this encoding with a concept of
“monotonicity”. The effect of this is that traces can be grouped into equivalence
classes, and in each class, all traces which are not monotonic will be considered
as unsatisfiable by the SMT solver. The idea of course is that such traces are
in fact redundant. This work has demonstrated some promising results as most
concurrency bugs in real applications have been found to be shallow. We note
that [14] incidentally enjoyed some (weak) form of SI pruning, due to the sim-
ilarity between conflict clause learning and state interpolation. However, there
the synergy between POR and SMT is unclear. We later demonstrate in Sec. 7
that such synergy in [14] is indeed relatively poor.

There is a fundamental problem with scalability in [14], as mentioned in the
follow-up work [23], that “It will not scale to the entire concurrent program”
if we encode the whole search space as a single formula and submit it to an
SMT solver.

Let us first compare [14] with our work. Essentially, the difference is twofold.
First, in this paper, the theory for partial order reduction is property driven. In
contrast, the monotonicity reduction of [14] is not. In other words, though prop-
erty driven pruning is observed in [14], it is contributed mainly by the conflict
clauses learned, not from the monotonicity relation. We specifically exemplify the
power of property driven POR in the later sections. Second, the encoding in [14]
is processed by a black-box SMT solver. Thus important algorithmic refinements
are not possible. Some examples:

• There are different options in implementing SI. Specifically in this paper, we
employ “precondition” computations. Using a black-box solver, one has to rely
on its fixed interpolation methods.



• Our approach is lazy in a sense that our solver is only required to consider
one symbolic path at a time; in [14] it is not the case. This matters most when
the program is unsafe and finding counter-examples is relatively easy (there are
many traces which violate the safety property).

• In having a (forward) symbolic execution framework, one can direct the search
process. This is useful since the order in which state interpolants are generated
does give rise to different reductions. Of course, such manipulation of the search
process is hard, if not impossible, when using a black-box solver.

In order to remedy the scalability issue of [14], the work [23] adapted it to
the setting of program testing. In particular, [23] proposed a concurrent trace
program (CTP) framework which employs both concrete execution and symbolic
solving to strike a balance between efficiency and scalability of an SMT-based
method. However, when the input program is safe, i.e., absence of bugs, [23] in
general suffers from the same scalability issue as in [14].

We remark that, the new direction of [23], in avoiding the blow-up of the
SMT solver, is in fact preceded by the work on under-approximation widening
(UW) [11]. As with CTP, UW models a subset, which will be incrementally
enlarged, of all the possible interleavings as an SMT formula and submits it to
an SMT solver. In UW the scheduling decisions are also encoded as constraints,
so that the unsatisfiable core returned by the solver can then be used to further
the search in probably a useful direction. This is the major contribution of UW.
However, an important point is that this furthering of the search is a repeated
call to the solver, this time with a weaker formula; which means that the problem
at hand is now larger, having more traces to consider. On this repeated call, the
work done for the original call is thus duplicated.

At first glance, it seems attractive and simple to encode the problem com-
pactly as a set of constraints and delegate the search process to a general-purpose
SMT solver. However, there are some fundamental disadvantages, and these arise
mainly because it is hard to exploit the semantics of the program to direct the
search inside the solver. This is in fact evidenced in the works mentioned above.

We believe, however, the foremost disadvantage of using a general-purpose
solver lies in the encoding of process interleavings. For instance, even when a
concurrent program has only one feasible execution trace, the encoding formula
being fed to the solver is still of enormous size and can easily choke up the solver.
More importantly, different from safety verification of sequential programs, the
encoding of interleavings (e.g., [14] uses the variable sel to model which pro-
cess is selected for executing) often hampers the normal derivations of succinct
conflict clauses by means of resolution in modern SMT solvers. We empirically
demonstrate the inefficiency of such approach in Sec. 7.

Another important related work is [22], developed independently4 but follows
a similar direction as in the current paper: combining POR with a standard state
interpolation algorithm, which is often referred to as the IMPACT algorithm [17].

4 Our work has been publicly available since 2012 in forms of a draft paper and a
Ph.D. thesis.



Nevertheless, it is important to note that the theoretical framework presented
in this paper subsumes [22]. While this paper proposes the novel concept of
Property Driven POR before combining it with the state interpolation algorithm,
[22] exploits directly the concept of “monotonicity” as in [14], thus their POR

part does not give rise to property driven pruning.
Finally, we mention our previous work [5] where symmetric transformations

of state interpolants are used to enhance symmetry reduction in safety verifi-
cation of concurrent programs. While [5] relies on the fact that processes are
defined parametrically and are roughly similar, this paper does not employ such
assumptions.

3 Background

We consider a concurrent system composed of a finite number of threads or
processes performing atomic operations on shared variables. Let Pi (1 ≤ i ≤ n)
be a process with the set transi of transitions. For simplicity, assume that transi
contains no cycles.

We also assume all processes have disjoint sets of transitions. Let T =
∪ni=1transi be the set of all transitions. Let Vi be the set of local variables
of process Pi, and Vshared the set of shared variables of the given concurrent
program. Let pci ∈ Vi be a special variable representing the process program
counter, and the tuple 〈pc1, pc2 · · · , pcn〉 represent the global program point.
Let SymStates be the set of all global symbolic states of the given program
where s0 ∈ SymStates is the initial state. A state s ∈ SymStates comprises two
parts: its global program point `, also denoted by pc(s), which is a tuple of local
program counters, and its symbolic constraints JsK over the program variables.
In other words, we denote a state s by 〈pc(s), JsK〉.

We consider the transitions of states induced by the program. Following [10],
we only pay attention to visible transitions. A (visible) transition t{i} pertains
to some process Pi. It transfers process Pi from control location `1 to `2. In
general, the application of t{i} is guarded by some condition cond (cond might
be just true). At some state s ∈ SymStates, when the ith component of pc(s),
namely pc(s)[i], equals `1, we say that t{i} is schedulable5 at s. And when s
satisfies the guard cond, denoted by s |= cond, we say that t{i} is enabled at
s. For each state s, let Schedulable(s) and Enabled(s) denote the set of transi-
tions which respectively are schedulable at s and enabled at s. A state s, where
Schedulable(s) = ∅, is called a terminal state.

Let s
t→ s′ denote transition step from s to s′ via transition t. This step

is possible only if t is schedulable at s. We assume that the effect of applying
an enabled transition t on a state s to arrive at state s′ is well-understood.
In our symbolic execution framework, executing a schedulable but not enabled
transition results in an infeasible state. A state s is called infeasible if JsK is
unsatisfiable. For technical reasons needed below, we shall allow schedulable

5 This concept is not standard in traditional POR, we need it here since we are dealing
with symbolic search.



transitions emanating from an infeasible state; it follows that the destination
state must also be infeasible.

For a sequence of transitions w (i.e., w ∈ T ∗), Rng(w) denotes the set of
transitions that appear in w. Also let T` denote the set of all transitions which
are schedulable somewhere after global program point `. We note here that the
schedulability of a transition at some state s only depends on the program point
component of s, namely pc(s). It does not depend on the constraint component
of s, namely JsK. Given t1, t2 ∈ T we say t1 can de-schedule t2 iff there exists a
state s such that both t1, t2 are schedulable at s but t2 is not schedulable after
the execution of t1 from s.

Following the above, s1
t1···tm=⇒ sm+1 denotes a sequence of state transitions,

and we say that sm+1 is reachable from s1. We call s1
t1→ s2

t2→ · · · tm→ sm+1

a feasible derivation from state s1, iff ∀ 1 ≤ i ≤ m • ti is enabled at si.
As mentioned earlier, an infeasible derivation results in an infeasible state (an
infeasible state is still aware of its global program point). An infeasible state
satisfies any safety property.

We define a complete execution trace, or simply trace, ρ as a sequence of

transitions such that it is a derivation from s0 and s0
ρ

=⇒ sf and sf is a
terminal state. A trace is infeasible if it is an infeasible derivation from s0. If a
trace is infeasible, then at some point, it takes a transition which is schedulable
but is not enabled. From thereon, the subsequent states are infeasible states.

We say a given concurrent program is safe wrt. a safety property ψ if ∀s ∈
SymStates • if s is reachable from the initial state s0 then s is safe, that is,
s |= ψ. A trace ρ is safe wrt. ψ, denoted as ρ |= ψ, if all its states satisfy ψ.

Partial Order Reduction (POR) vs. State-based Interpolation (SI)

We assume the readers are familiar with the traditional concept of POR. Re-
garding state-based interpolation, we follow the approach of [13, 17]. Here our
symbolic execution is depicted as a tree rooted at the initial state s0 and for each
state si therein, the descendants are just the states obtainable by extending si
with a feasible transition.

Definition 1 (Safe Root). Given a transition system and an initial state s0,
let s be a feasible state reachable from s0. We say s is a safe root wrt. a safety
property ψ, denoted

a
ψ(s), iff all states s′ reachable from s are safe wrt. ψ.

Definition 2 (State Coverage). Given a transition system and an initial state
s0 and si and sj which are two symbolic states such that (1) si and sj are
reachable from s0 and (2) si and sj share the same program point `, we say si
covers sj wrt. a safety property ψ, denoted by si �ψ sj, iff

a
ψ(si) implies

a
ψ(sj).

The impact of state coverage relation is that if (1) si covers sj , and (2) the
subtree rooted at si has been traversed and proved to be safe, then the traversal
of subtree rooted at sj can be avoided. In other words, we gain performance by
pruning the subtree at sj . Obviously, if si naturally subsumes sj , i.e., JsjK |= JsiK



or simply sj |= si, then state coverage is trivially achieved. In practice, however,
this scenario does not happen often enough.

Definition 3 (Sound State Interpolant). Given a transition system and an
initial state s0, given a safety property ψ and program point `, we say a formula Ψ
is a sound (state) interpolant for `, denoted by SI(`, ψ), if for all states s ≡ 〈`, ·〉
reachable from s0, s |= Ψ implies that s is a safe root.

What we want now is to generate a formula Ψ (called interpolant), which
still preserves the safety of all states reachable from si, but is weaker (more
general) than the original formula associated to the state si. In other words,
we should have si |= SI(`, ψ). We assume that this condition is always ensured
by any implementation of state-based interpolation. The main purpose of using
Ψ rather than the original formula associated to the symbolic state si is to
increase the likelihood of subsumption. That is, the likelihood of having sj |= Ψ
is expected to be much higher than the likelihood of having sj |= si.

In fact, the perfect interpolant should be the weakest precondition [8] com-
puted for program point ` wrt. the transition system and the safety prop-
erty ψ. We denote this weakest precondition as wp(`, ψ). Any subsequent state
sj ≡ 〈`, ·〉 which has sj stronger than this weakest precondition can be pruned.
However, in general, the weakest precondition is too computationally demand-
ing. An interpolant for the state si is indeed a formula which approximates
the weakest precondition at program point ` wrt. the transition system, i.e.,
Ψ ≡ SI(`, ψ) ≡ Intp(si,wp(`, ψ)). A good interpolant is one which closely ap-
proximates the weakest precondition and can be computed efficiently.

The symbolic execution of a program can be augmented by annotating each
program point with its corresponding interpolants such that the interpolants
represent the sufficient conditions to preserve the unreachability of any unsafe
state. Then, the basic notion of pruning with state interpolant can be defined as
follows.

Definition 4 (Pruning with Interpolant). Given a symbolic state s ≡ 〈`, ·〉
such that ` is annotated with some interpolant Ψ , we say that s is pruned by the
interpolant Ψ if s implies Ψ (i.e., s |= Ψ).

Now let us discuss the the effectiveness of POR and SI in pruning the search
space with an example. For simplicity, we purposely make the example concrete,
i.e., states are indeed concrete states.

EXAMPLE 1 (Closely coupled processes): See Fig. 1. Program points are shown in
angle brackets. Fig. 1(a) shows the control flow graphs of two processes. Process
1 increments x twice whereas process 2 doubles x twice. The transitions associ-
ated with such actions and the safety property are depicted in the figure. POR

requires a full search tree while Fig. 1(b) shows the search space explored by SI.
Interpolants are in curly brackets. Bold circles denote pruned/subsumed states.

Let us first attempt this example using POR. It is clear that t
{1}
1 is dependent

with both t
{2}
1 and t
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2 is dependent with both t

{2}
1 and t

{2}
2 . Indeed,
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(a) Two Closely Coupled Processes
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(b) Search Space by SI

Fig. 1: Application of SI on 2 Closely Coupled Processes

each of all the 6 execution traces in the search tree ends at a different concrete
state. As classic POR methods use the concept of trace equivalence for pruning,
no interleaving is avoided: those methods will enumerate the full search tree of
19 states (for space reasons, we omit it here).

Revisit the example using SI, where we use the weakest preconditions [8] as
the state interpolants: the interpolant for a state is computed as the weakest
precondition to ensure that the state itself as well as all of its descendants are
safe (see Fig. 1(b)). We in fact achieve the best case scenario with it: whenever we
come to a program point which has been examined before, subsumption happens.
The number of non-subsumed states is still of order O(k2) (where k = 3 in this
particular example), assuming that we generalize the number of local program
points for each process to O(k). Fig. 1(b) shows 9 non-subsumed states and 4
subsumed states.

In summary, the above example shows that SI might outperform POR when
the component processes are closely coupled. However, one can easily devise an
example where the component processes do not interfere with each other at all.
Under such condition POR will require only one trace to prove safety, while SI is
still (lower) bounded by the total number of global program points. In this paper,
we contribute by proposing a framework to combine POR and SI synergistically.

4 Property Driven POR (PDPOR)

“Combining classic POR methods with symbolic algorithms has been proven to
be difficult” [14]. One fundamental reason is that the concepts of (Mazurkiewicz)
equivalence and transition independence, which drive most practical POR imple-
mentations, rely on the equivalence of two concrete states. However, in symbolic
traversal, we rarely encounter two equivalent symbolic states.

We now make the following definition which is crucial for the concept of
pruning and will be used throughout this paper.



Definition 5 (Trace Coverage). Let ρ1, ρ2 be two traces of a concurrent pro-
gram. We say ρ1 covers ρ2 wrt. a safety property ψ, denoted as ρ1 wψ ρ2, iff
ρ1 |= ψ → ρ2 |= ψ.

Instead of using the concept of trace equivalence, from now on, we only make
use of the concept of trace coverage. The concept of trace coverage is definitely
weaker than the concept of Mazurkiewicz equivalence. In fact, if ρ1 and ρ2 are
(Mazurkiewicz) equivalent then ∀ψ • ρ1 wψ ρ2 ∧ ρ2 wψ ρ1. Now we will define
a new and weaker concept which therefore generalizes the concept of transition
independence.

Definition 6 (Semi-Commutative after a State). For a given concurrent

program, a safety property ψ, and a derivation s0
θ

=⇒ s, for all t1, t2 ∈ T
which cannot de-schedule each other, we say t1 semi-commutes with t2 after
state s wrt. wψ, denoted by 〈s, t1 ↑ t2, ψ〉, iff for all w1, w2 ∈ T ∗ such that
θw1t1t2w2 and θw1t2t1w2 are execution traces of the program, then we have
θw1t1t2w2 wψ θw1t2t1w2.

From the definition, Rng(θ), Rng(w1), and Rng(w2) are pairwise disjoint.
Importantly, if s is at program point `, we have Rng(w1)∪Rng(w2) ⊆ T`\{t1, t2}.
We observe that wrt. some ψ, if all important events, those have to do with
the safety of the system, have already happened in the prefix θ, the “semi-
commutative” relation is trivially satisfied. On the other hand, the remaining
transitions might still interfere with each other (but not the safety), and do not
satisfy the independent relation.

The concept of “semi-commutative” is obviously weaker than the concept of
independence. If t1 and t2 are independent, it follows that ∀ψ ∀s•〈s, t1 ↑ t2, ψ〉∧
〈s, t2 ↑ t1, ψ〉. Also note that, in contrast to the relation of transition indepen-
dence, the “semi-commutative” relation is not symmetric.

We now introduce a new definition for persistent set.

Definition 7 (Persistent Set of a State). A set T ⊆ T of transitions schedu-
lable in a state s ∈ SymStates is persistent in s wrt. a property ψ iff, for all

derivations s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only transitions ti ∈ T
and ti 6∈ T, 1 ≤ i ≤ m, each transition in T semi-commutes with ti after s wrt.
wψ.

Safety property ψ and current state s
〈1〉 T := ∅
〈2〉 Add an enabled transition t into T
〈3〉 foreach remaining schedulable transition ti
〈4〉 if ¬(∀ tpj ∈ T • 〈s, tpj ↑ ti, ψ〉)
〈5〉 Add ti into T

Fig. 2: Computing a Persistent Set of a State

For each state, computing a
persistent set from the “semi-
commutative” relation is similar
to computing the classical per-
sistent set under the transition
independence relation. The algo-
rithms for this task can be easily
adapted from the algorithms presented in [10]. For convenience, we show one of
such possibilities in Fig. 2.

We note here that the computation of the persistent set assumes that the
semi-commutative relation is given. As in traditional algorithms, the quality (i.e.



the size) of the returned persistent set is highly dependent on the first transition
t to be added and the order in which the remaining transitions ti are considered.
This is, however, not the topic of the current paper.

With the new definition of persistent set, we now can proceed with the nor-
mal selective search as described in classic POR techniques. In the algorithm
presented in Fig. 3, we perform depth first search (DFS), and only accommo-
date safety verification (invariant property ψ).

Theorem 1. The selective search algorithm in Fig. 3 is sound. ut

Proof (Outline). Assume that there exist some traces which violate the property
ψ and are not examined by our selective search. Let denote the set of such traces

as Wviolated. For each trace ρ = s0
t1→ s1

t2→ s2 · · · tm→ sm, ρ ∈ Wviolated, let
first(ρ) denote the smallest index i such that ti is not in the persistent set

of si−1. Without loss of generality, assume ρmax = s0
t1→ s1

t2→ s2 · · · tm→ sm
having the maximum first(ρ). Let i = first(ρmax) < m. As the “commuter”
and “commutee” cannot “de-schedule” each other, in the set {ti+1 · · · tm} there
must be a transition which belongs to the persistent set of si−1 (otherwise, the
must exist some transition that belongs to the persistent set of si−1 which is
schedulable at sm. Therefore sm is not a terminal state). Let j be the smallest
index such that tj belongs to the persistent set of si−1. By definition, wrt. wψ
and after si−1, tj semi-commutes with ti, ti+1, · · · tj−1. Also due to the definition
of the “semi-commutative” relation we deduce that all the following traces (by
making tj repeatedly commute backward):

ρ′1 = t1t2 · · · ti−1titi+1 · · · tjtj−1tj+1 · · · tm
...

ρ′j−i−1 = t1t2 · · · ti−1titjti+1 · · · tj−1tj+1 · · · tm
ρ′j−i = t1t2 · · · ti−1tjtiti+1 · · · tj−1tj+1 · · · tm

must violate the property ψ too. However, first(ρ′j−i) > first(ρmax). This con-
tradicts the definition of ρmax. ut

Safety property ψ and initial state s0
〈1〉 Initially : Explore(s0)
function Explore(s)
〈2〉 if s 6|= ψ Report Error and TERMINATE
〈3〉 T := Persistent Set(s)
〈4〉 foreach enabled transition t in T do

〈5〉 s
t−−→ s′ /* Execute t */

〈6〉 Explore(s′)
end function

Fig. 3: New Selective Search Algorithm

In preparing for POR and SI to
work together, we now further mod-
ify the concept of persistent set so
that it applies for a set of states
sharing the same program point. We
remark that the previous definitions
apply only for a specific state. The
key intuition is to attach a pre-
condition φ to the program point
of interest, indicating when semi-
commutativity happens.

Definition 8 (Semi-Commutative after a Program Point). For a given
concurrent program, a safety property ψ, and t1, t2 ∈ T , we say t1 semi-commutes



with t2 after program point ` wrt. wψ and φ, denoted as 〈`, φ, t1 ↑ t2, ψ〉, iff
for all state s ≡ 〈`, ·〉 reachable from the initial state s0, if s |= φ then t1 semi-
commutes with t2 after state s wrt. wψ.

Definition 9 (Persistent Set of a Program Point). A set T ⊆ T of transi-
tions schedulable at program point ` is persistent at ` under a trace interpolant
Ψ wrt. a property ψ iff, for all state s ≡ 〈`, ·〉 reachable from the initial state s0,

if s |= Ψ then for all derivations s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only
transitions ti ∈ T and ti 6∈ T, 1 ≤ i ≤ m, each transition in T semi-commutes
with ti after state s wrt. wψ.

Assume that T = {tp1, tp2, · · · tpk}. The trace interpolant Ψ can now be
computed as Ψ =

∧
φji for 1 ≤ j ≤ k, 1 ≤ i ≤ m such that 〈`, φji, tpj ↑ ti, ψ〉.

For each program point, it is possible to have different persistent sets asso-
ciated with different interpolants. In general, a state which satisfies a stronger
interpolant will have a smaller persistent set, therefore, it enjoys more pruning.

5 Synergy of PDPOR and SI

We now show our combined framework. We assume for each program point,
a persistent set and its associated interpolant are computed statically, i.e., by
separate analyses. In other words, when we are at a program point, we can right
away make use of the information about its persistent set.

Assume safety property ψ and initial state s0
〈1〉 Initially : Explore(s0)

function Explore(s)
Let s be 〈`, ·〉

〈2〉 if (memoed(s, Ψ)) return Ψ
〈3〉 if (s 6|= ψ) Report Error and TERMINATE

〈4〉 Ψ := ψ
〈5〉 〈T, Ψ trace〉 := Persistent Set(`)
〈6〉 if (s |= Ψ trace)
〈7〉 Ts := T
〈8〉 Ψ := Ψ ∧ Ψ trace

〈9〉 else Ts := Schedulable(s)
〈10〉 foreach t in (Ts \ Enabled(s)) do
〈11〉 Ψ := Ψ ∧ pre(t, false)
〈12〉 foreach t in (Ts ∩ Enabled(s)) do

〈13〉 s
t−−→ s′ /* Execute t */

〈14〉 Ψ
′

:= Explore(s′)

〈15〉 Ψ := Ψ ∧ pre(t, Ψ
′
)

〈16〉 memo and return (Ψ)
end function

Fig. 4: A Framework for POR and SI (DFS)

The algorithm is in Fig. 4. The
function Explore has input s and
assumes the safety property at
hand is ψ. It naturally performs
a depth first search of the state
space.
Two Base Cases: The function
Explore handles two base cases.
One is when the current state
is subsumed by some computed
(and memoed) interpolant Ψ . No
further exploration is needed, and
Ψ is returned as the interpolant
(line 2). The second base case is
when the current state is found to
be unsafe (line 3).

Combining Interpolants: We
make use of the (static) persistent
set T computed for the current
program point. We comment fur-
ther on this in the next section.

The set of transitions to be considered is denoted by Ts. When the current
state implies the trace interpolant Ψ trace associated with T , we need to consider



only those transitions in T . Otherwise, we need to consider all the schedulable
transitions. Note that when the persistent set T is employed, the interpolant
Ψ trace must contribute to the combined interpolant of the current state (line 8).
Disabled transitions at the current state will strengthen the interpolant as in
line 11. Finally, we recursively follow those transitions which are enabled at the
current state. The interpolant of each child state contributes to the interpolant
of the current state as in line 15. In our framework, interpolants are propagated
back using the precondition operation pre, where pre(t, φ) denotes a safe approx-
imation of the weakest precondition wrt. the transition t and the postcondition
φ [8].

Theorem 2. The algorithm in Fig. 4 is sound. ut

t1
t3

t2

A
B

si+1

s0

si

θ1

t1
t3

t2

A’
B’

sj+1

θ2

sj
Subsumed

Fig. 5: Inductive Correctness

Proof (Outline). We use structural induction. Refer to Fig. 5. Assume that from
s0 we reach state si ≡ 〈`, ·〉. W.l.o.g., assume that at si there are three transitions
which are schedulable, namely t1, t2, t3, of which only t1 and t2 are enabled. Also
assume that under the interpolant Ψ2, the persistent set of `, and therefore of
si, is just {t1}. From the algorithm, we will extend si with t1 (line 13) and
attempt to verify the subtree A (line 14). Our induction hypothesis is that we
have finished considering A, and indeed, it is safe under the interpolant ΨA.
That subtree will contribute Ψ1 = pre(t1, ΨA) (line 15) to the interpolant of si.

Using the interpolant Ψ2, the branch having transition t2 followed by the
subtree B is pruned and that is safe, due to Theorem 1. Also, the disabled
transition t3 contributes Ψ3 (line 11) to the interpolant of si. Now we need to
prove that Ψ = Ψ1 ∧ Ψ2 ∧ Ψ3 is indeed a sound interpolant for program
point `.

Assume that subsequently in the search, we reach some state sj ≡ 〈`, ·〉. We

will prove that Ψ is a sound interpolant of ` by proving that if sj |= Ψ , then the
pruning of sj is safe.

First, sj |= Ψ implies that sj |= Ψ3. Therefore, at sj , t3 is also disabled.

Second, assume that t1 is enabled at sj and sj
t1−−→ sj+1 (if not the pruning

of t1 followed by A′ is definitely safe). Similarly, sj |= Ψ implies that sj |= Ψ1.

Consequently, sj+1 |= ΨA and therefore the subtree A′ is safe too. Lastly, sj |= Ψ



implies that sj |= Ψ2. Thus the reasons which ensure that the traces ending with
subtree A cover the traces ending with subtree B also hold at sj . That is, the
traces ending with subtree A′ also cover the traces ending with subtree B′. ut

6 Implementation of PDPOR

We now elaborate on the remaining task: how to estimate the semi-commutative
relation, thus deriving the (static) persistent set at a program point. Similar to
the formalism of traditional POR, our formalism is of paramount importance
for the semantic use as well as to construct the formal proof of correctness. In
practice, however, we have to come up with sufficient conditions to efficiently im-
plement the concepts. In this paper, we estimate the semi-commutative relation
in two steps:
1. We first employ any traditional POR method and first estimate the “semi-

commutative” relation as the traditional independence relation (then the
corresponding condition φ is just true). This is possible because the pro-
posed concepts are strictly weaker than the corresponding concepts used in
traditional POR methods.

2. We then identify and exploit a number of patterns under which we can stat-
ically derive and prove the semi-commutative relation between transitions.
In fact, these simple patterns suffice to deal with a number of important
real-life applications.

In the rest of this section, we outline three common classes of problems, from
which the semi-commutative relation between transitions can be easily identified
and proved, i.e., our step 2 becomes applicable.

Resource Usage of Concurrent Programs: Programs make use of limited
resource (such as time, memory, bandwidth). Validation of resource usage in
sequential setting is already a hard problem. It is obviously more challenging in
the setting of concurrent programs due to process interleavings.

Here we model this class of problems by using a resource variable r. Initially,
r is zero. Each process can increment or decrement variable r by some concrete
value (e.g., memory allocation or deallocation respectively). A process can also
double the value r (e.g., the whole memory is duplicated). However, the resource
variable r cannot be used in the guard condition of any transition, i.e., we cannot
model the behavior of a typical garbage collector. The property to be verified is
that, “at all times, r is (upper-) bounded by some constant”.

Proposition 1. Let r be a resource variable of a concurrent program, and as-
sume the safety property at hand is ψ ≡ r ≤ C, where C is a constant. For all
transitions (assignment operations only) t1 : r = r+c1, t2 : r = r∗2, t3 : r = r−c2
where c1, c2 > 0, we have for all program points `:
〈`, true, t1 ↑ t2, ψ〉 ∧ 〈`, true, t1 ↑ t3, ψ〉 ∧ 〈`, true, t2 ↑ t3, ψ〉 ut
Informally, other than common mathematical facts such as additions can

commute and so do multiplications and subtractions, we also deduce that addi-
tions can semi-commute with both multiplications and subtractions while multi-
plications can semi-commute with subtractions. This Proposition can be proved
by using basic laws of algebra.



EXAMPLE 2 : Let us refer back to the example of two closely coupled processes
introduced in Sec. 3, but now under the assumption that x is the resource variable
of interest. Using the semi-commutative relation derived from Proposition 1, we
need to explore only one complete trace to prove this safety.

We recall that, in contrast, POR (and DPOR)-only methods will enumerate the
full execution tree which contains 19 states and 6 complete execution traces. Any
technique which employs only the notion of Mazurkiewicz trace equivalence for
pruning will have to consider all 6 complete traces (due to 6 different terminal
states). SI alone can reduce the search space in this example, and requires to
explore only 9 states and 4 subsumed states (as in Sec. 3).

Detection of Race Conditions: [24] proposed a property driven pruning al-
gorithm to detect race conditions in multithreaded programs. This work has
achieved more reduction in comparison with DPOR. The key observation is that,
at a certain location (program point) `, if their conservative “lockset analysis”
shows that a search subspace is race-free, the subspace can be pruned away. As we
know, DPOR relies solely on the independence relation to prune redundant inter-
leavings (if t1, t2 are independent, there is no need to flip their execution order).
In [24], however, even when t1, t2 are dependent, we may skip the corresponding
search space if flipping the order of t1, t2 does not affect the reachability of any
race condition. In other words, [24] is indeed a (conservative) realization of our
PDPOR, specifically targeted for detection of race conditions. Their mechanism
to capture such scenarios is by introducing a trace-based lockset analysis.

Ensuring Optimistic Concurrency: In the implementations of many concur-
rent protocols, optimistic concurrency [20], i.e., at least one process commits, is
usually desirable. This can be modeled by introducing a flag variable which will
be set when some process commits. The flag variable once set can not be un-
set. It is then easy to see that for all program point ` and transitions t1, t2, we
have 〈`, flag = 1, t1 ↑ t2, ψ〉. Though simple, this observation will bring us more
reduction compared to traditional POR methods.

7 Experiments

This section conveys two key messages. First, when trace-based and state-based
methods are not effective individually, our combined framework still offers sig-
nificant reduction. Second, property driven POR can be very effective, and appli-
cable not only to academic programs, but also to programs used as benchmarks
in the state-of-the-art.

We use a 3.2 GHz Intel processor and 2GB memory running Linux. Timeout
is set at 10 minutes. In the tables, cells with ‘-’ indicate timeout. We compare the
performance of Partial Order Reduction alone (POR), State Interpolation alone
(SI), the synergy of Partial Order Reduction and State Interpolation (POR+SI),
i.e., the semi-commutative relation is estimated using only step 1 presented in
Sec. 6, and when applicable, the synergy of Property Driven Partial Order Re-
duction and State Interpolation (PDPOR+SI), i.e., the semi-commutative relation



is estimated using both steps presented in Sec. 6. For the POR component, we
use the implementation from [3].

Table 1 starts with parameterized versions of the producer/consumer example
because its basic structure is extremely common. There are 2 ∗N producers and
1 consumer. Each producer will do its own non-interfered computation first,
modeled by a transition which does not interfere with other processes. Then
these producers will modify the shared variable x as follows: each of the first N
producers increments x, while the other N producers double the value of x. On
the other hand, the consumer consumes the value of x. The safety property is
that the consumed value is no more than N ∗ 2N .

Table 1 clearly demonstrates the synergy benefits of POR and SI. POR+SI

significantly outperforms both POR and SI. Note that this example can easily
be translated to the resource usage problem, where our PDPOR requires only a
single trace (and less than 0.01 second) in order to prove safety.

Table 1: Synergy of POR and SI

POR SI POR+SI
Problem States T(s) States T(s) States T(s)
p/c-2 449 0.03 514 0.17 85 0.03
p/c-3 18745 2.73 6562 2.43 455 0.19
p/c-4 986418 586.00 76546 37.53 2313 1.07
p/c-5 − − − − 11275 5.76
p/c-6 − − − − 53261 34.50
p/c-7 − − − − 245775 315.42

din-2a 22 0.01 21 0.01 21 0.01
din-3a 646 0.05 153 0.03 125 0.02
din-4a 155037 19.48 1001 0.17 647 0.09
din-5a − − 6113 1.01 4313 0.54
din-6a − − 35713 22.54 24201 4.16
din-7a − − 202369 215.63 133161 59.69

bak-2 48 0.03 38 0.03 31 0.02
bak-3 1003 1.85 264 0.42 227 0.35
bak-4 27582 145.78 1924 5.88 1678 4.95
bak-5 − − 14235 73.69 12722 63.60

We next use the parame-
terized version of the dining
philosophers. We chose this
for two reasons. First, this is
a classic example often used
in concurrent algorithm de-
sign to illustrate synchro-
nization issues and tech-
niques for resolving them.
Second, previous work [14]
has used this to demon-
strate benefits from combin-
ing POR and SMT.

The first safety property
used in [14], “it is not that
all philosophers can eat si-
multaneously”, is somewhat
trivial. Therefore, here we
verify a tight property, which is (a): “no more than half the philosophers can
eat simultaneously”. To demonstrate the power of symbolic execution, we verify
this property without knowing the initial configurations of all the forks. Table 1,
again, demonstrates the significant improvements of POR+SI over POR alone and
SI alone. We note that the performance of our POR+SI algorithm is about 3 times
faster than [14]6.

We additionally considered a second safety property as in [14], namely (b):
“it is possible to reach a state in which all philosophers have eaten at least once”.
Our symbolic execution framework requires only a single trace (and less than
0.01 second) to prove this property in all instances, whereas [14] requires even
more time compared to proving property (a). This illustrates the scalability issue

6 [14] is not publicly available. Therefore, it is not possible for us to make more com-
prehensive comparisons.



of [14], which is representative for other techniques employing general-purpose
SMT solver for symbolic pruning.

We also perform experiments on the “Bakery” algorithm. Due to existence
of infinite domain variables, model checking hardly can handle this case. Here
we remark that in symbolic methods, loop handling is often considered as an
orthogonal issue. Programs with statically bounded loops can be easily unrolled
into equivalent loop-free programs. For unbounded loops, either loop invariants
are provided or the employment of some invariant discovery routines, e.g., as in
[5], is necessary. In order for our algorithm to work here, we make use of the
standard loop invariant for this example.

To further demonstrate the power our synergy framework over [14] as well
as the power of our property driven POR, we experiment next on the Sum-
of-ids program. Here, each process (of N processes) has one unique id and will
increment a shared variable sum by this id. We prove that in the end this variable
will be incremented by the sum of all the ids.

Table 2: Comparison with [14]

[14] w. Z3 POR+SI PDPOR+SI
T(s) #C #D T(s) States T(s) States T(s)

sum-6 1608 1795 0.08 193 0.05 7 0.01
sum-8 54512 59267 10.88 1025 0.27 9 0.01
sum-10 − − − 5121 1.52 11 0.01
sum-12 − − − 24577 8.80 13 0.01
sum-14 − − − 114689 67.7 15 0.01

See Table 2, where we ex-
periment with Z3 [7] (ver-
sion 4.1.2) using the encod-
ings presented in [14]. #C de-
notes the number of conflicts
while #D denotes the num-
ber of decisions made by Z3.
We can see that our synergy
framework scale much better than [14] with Z3. Also, this example can also
be translated to resource usage problem, our use of property-driven POR again
requires one single trace to prove safety.

Table 3: Experiments on [6]’s Programs

[6] SI PDPOR+SI
Problem C T(s) States T(s) States T(s)
micro 2 17 1095 20201 10.88 201 0.04
stack 12 225 529 0.26 529 0.26
circular buffer ∞ 477 29 0.03 29 0.03
stateful20 10 95 1681 1.13 41 0.01

Finally, to benchmark our
framework with SMT-based meth-
ods, we select four safe pro-
grams from [6] where the exper-
imented methods did not perform
well. Those programs are micro 2,
stack, circular buffer, and state-
ful20. We note that safe programs allow fairer comparison between different
approaches since to verify them we have to cover the whole search space. Ta-
ble 3 shows the running time of SI alone and of the combined framework. For
convenience, we also tabulate the best running time reported in [6] and C is
the context switch bound used. We assume no context switch bound, hence the
corresponding value in our framework is ∞.

We can see that even our SI alone significantly outperforms the techniques
in [6]. We believe it is due to the inefficient encoding of process interleavings
(mentioned in Sec. 2) as well as the following reasons. First, our method is lazy,
which means that only a path is considered at a time: [6] itself demonstrates
partially the usefulness of this. Second, but importantly, we are eager in discov-
ering infeasible paths. The program circular buffer, which has only one feasible



complete execution trace, can be efficiently handled by our framework, but not
SMT. This is one important advantage of our symbolic execution framework over
SMT-based methods, as discussed in [17].

It is important to note that, PDPOR significantly improves the performance
of SI wrt. programs micro 2 and stateful20. This further demonstrates the appli-
cability of our proposed framework.

8 Conclusion

We present a verification framework which synergistically combines trace-based
reduction techniques with the recently established notion of state interpolant.
One key contribution is the new concept of property-driven POR which serves
to reduce more interleavings than previously possible. We believe that fully au-
tomated techniques to compute the semi-commutative relations for specific, but
important, application domains will be interesting future work.
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