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Problem Setting

Verifying functional correctness of dynamic data structures

Specifications are formalized using a logic of heaps and separation
A core feature is the use of user-defined recursive predicates

The Problem: entailment checking, where both LHS and RHS involve
such predicates



The State-of-the-Art: Unfold-and-Match

Performs systematic folding and unfolding steps of the recursive rules,
and succeeds when we produce a formula which is obviously provable:

no recursive predicate in RHS of the proof obligation, and a direct
proof can be achieved by consulting some generic SMT solver;

no special consideration is needed on any occurrence of a predicate
appearing in the formula, i.e., formula abstraction can be applied.

E.g., hip/sleek (Chin et al. [2012]), dryad (Qiu et al. [2013])



Example: Unfold-and-Match

Consider l̂s(x,y)
def
= x=y ∧ emp | x 6=y ∧ (x7→t) * l̂s(t,y)

Pre: l̂s(x,y)
assume(x != y)

z = x.next

Post: l̂s(z,y)

Unfold the precondition l̂s(x,y)

Case 1: holds because (x = y) and assume(x != y) implies false

Case 2: holds by matching z with t



Shortcomings

1 Recursion Divergence: when the “recursion” in the recursive rules is
structurally dissimilar to the program code

2 Generalization of Predicate: when the predicate describing a loop
invariant or a function is used later to prove a weaker property

(occurs often in practice, especially in iterative programs)



Recursion Divergence

When the “recursion” in the recursive rules is structurally dissimilar to
the program code

Pre: l̂s(x,y) ∗ (y 7→ )
z = y.next

Post: l̂s(x,z)

Fundamentally, it is about relating two definitions of a list segment:
(recurse rightwards, and recurse leftwards)

l̂s(x,y)
def
= x=y ∧ emp | x6=y ∧ (x7→t) * l̂s(t,y)

ls(x,y)
def
= x=y ∧ emp | x6=y ∧ (t7→y) * ls(x,t)

(sometimes inevitable, e.g., queue implementation using list segment)



Generalization of Predicate:

When the predicate describing a loop invariant or a function is used
later to prove a weaker property

sorted list(x, len, min) |= list(x, len)

ls(x, y) * list(y) |= list(x)



What is Needed: INDUCTION

Traditional works on automated induction generally require variables
of inductive type (so that the notions of base case and induction step
are well-defined)

Our predicates are (user-)defined over pointer variables, which are not
inductive
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The Specification Language

We use the language proposed by Duck et al. [2013], a logic with the
features of explicit heaps and a separation operator

It facilitates symbolic execution and therefore VC generation
Our induction method is not confined to this language

E.g. the below defines a skeleton list (we inherit the CLP semantics)

list(x , L) :- x = null, L l ∅.
list(x , L) :- x 6= null, L l (x 7→t) ∗ L1, list(t, L1).

(note that ∗ applies to terms, and not predicates as in traditional
Separation Logic)
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General Cut-Rule

(cut)
L1 |= A L2 ∧ A |= R

L1 ∧ L2 |= R

Trivial from the deduction point of view (top to bottom)

For proof derivation (bottom to top), obtaining an appropriate A is
tantamount to a magic step

In manual proofs, we perform this magic step all the time

Automating this step is extremely hard



Induction Rule 1

(i-1)
L1 |= A L2 ∧ A |= R

L1 ∧ L2 |= R
···

L1 |= A is “the same” as some obligation previously encountered in

the proof path (indicated by · · · above), which acts as an induction

hypothesis, thus L1 |= A will be discharged immediately

In other words, the proof path gives us a systematic way to discover
the magic formula A



Induction Rule 2

(i-2)
L1 |= A L2 ∧ A |= R

L1 ∧ L2 |= R
···

L2 ∧ A |= R is “the same” as some obligation previously

encountered in the proof path (indicated by · · · above), which acts as

an induction hypothesis, thus L2 ∧ A |= R will be discharged

immediately

Again, the proof path gives us a systematic way to discover the magic
formula A



Summary

Our automated induction rules allow for

a systematic method to discover A (in the cut-rule)

application of induction to discharge a proof obligation, thus we only
need to proceed with the remaining obligation

A technical challenge is to ensure induction applications do not lead
to circular (i.e., wrong) reasoning



Example (simplified by ignoring heaps)

even(x) :- x = 0.
even(x) :- y = x − 2, even(y).

m4(x) :- x = 0.
m4(x) :- z = x − 4, m4(z).

m4(x) |= even(x)

Unfold-and-Match will not work: there always remains obligation with
predicate m4 in the LHS and predicate even in the RHS



Example: Induction Works

(lu)

(ru)

(smt)
True

x=0 |= x=0

x=0 |= even(x)

m4(z) |= even(z)

True

z=x−4, even(z) |= y=x−2, t=y−2, even(t)
(smt)

z = x− 4, even(z) |= y = x− 2, even(y)
(ru)

z = x− 4, even(z) |= even(x)
(ru)

z = x− 4, m4(z) |= even(x)
(i-1)

m4(x) |= even(x)



Example: Induction Works

(lu)

(ru)

(smt)
True

x=0 |= x=0

x=0 |= even(x)
...

m4(x) |= even(x)



Example: Induction Works

(lu)

(i-1)
m4(z) |= even(z)

(ru)

(ru)

(smt)
True

z=x−4, even(z) |= y=x−2, t=y−2, even(t)

z = x− 4, even(z) |= y = x− 2, even(y)

z = x− 4, even(z) |= even(x)

z = x− 4, m4(z) |= even(x)

m4(x) |= even(x)

Applying induction rule 1, we discover even(z) as a candidate for A.

This step allows us to “flip” the predicate even(z) into the LHS so
that subsequently Unfold-and-Match can work.
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Some Examples

Proving commonly-used “lemmas” (or “axioms”); many existing
systems simply accept them as facts from the users

sorted list(x ,min) |= list(x)

sorted list1(x , len,min) |= list1(x , len)

sorted list1(x , len,min) |= sorted list(x ,min)

sorted ls(x , y ,min,max)∗sorted list(y ,min2) ∧ max ≤ min2 |=sorted list(x ,min)

l̂s1(x , y , len1) ∗ l̂s1(y , z , len2) |= l̂s1(x , z , len1+len2)

ls1(x , y , len1) ∗ list1(y , len2) |= list1(x , len1+len2)

l̂s1(x , last, len) ∗ (last 7→ new) |= l̂s1(x , new , len + 1)

avl(x , hgt,min,max , balance) |= bstree(x , hgt,min,max)

bstree(x , height,min,max) |= bintree(x , height)

· · ·

(running time ranges from 0.2 – 1 second per benchmark)



Some Examples

Eliminate the usage of lemmas: it indeed runs faster
at a node, we only look at the available induction hypotheses (0 – 3)
other systems look at all the “lemmas” (or “axioms”)

Table: Verification of Open-Source Libraries

Program Function Time per Function

glib/gslist.c
Singly
Linked-List

find, position, index,
nth,last,length,append,
insert at pos,merge sort,
remove,insert sorted list

<1s

glib/glist.c
Doubly
Linked-List

nth, position, find,
index, last, length

<1s

OpenBSD/
queue.h
Queue

simpleq remove after,
simpleq insert tail,
simpleq insert after

<1s

ExpressOS/
cachePage.c

lookup prev,
add cachepage

<1s

linux/mmap.c insert vm struct <1s
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What Next?

Improve the robustness

e.g. works for A |= B, but might fail if we strengthen A (or weaken B)

having too strong antecedent (or too weak consequent) is an obstacle
to the usage of induction



Questions?
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Related Work

hip/sleek (Chin et al. [2012]): a very comprehensive system
supporting specifications written in SL

dryad (Qiu et al. [2013]): more deterministic algorithm where
unfolding is guided by program footprint

“Cyclic Proof” (Brotherston et al. [2011]): a theory to ensure sound
termination of cyclic proof paths. This is similar to deciding if an
induction application is valid.
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