
Automatic Induction Proofs of Data-Structures in
Imperative Programs

Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh

National University of Singapore (NUS)

June 17, 2015

1 Introduction

2 The Specification Language

3 Intuition behind Our Induction Rules

4 Some Examples

5 Future Work

Problem Setting

Verifying functional correctness of dynamic data structures

Specifications are formalized using a logic of heaps and separation
A core feature is the use of user-defined recursive predicates

The Problem: entailment checking, where both LHS and RHS involve
such predicates

The State-of-the-Art: Unfold-and-Match

Performs systematic folding and unfolding steps of the recursive rules,
and succeeds when we produce a formula which is obviously provable:

no recursive predicate in RHS of the proof obligation, and a direct
proof can be achieved by consulting some generic SMT solver;

no special consideration is needed on any occurrence of a predicate
appearing in the formula, i.e., formula abstraction can be applied.

E.g., hip/sleek (Chin et al. [2012]), dryad (Qiu et al. [2013])

Example: Unfold-and-Match

Consider l̂s(x,y)
def
= x=y ∧ emp | x 6=y ∧ (x7→t) * l̂s(t,y)

Pre: l̂s(x,y)
assume(x != y)

z = x.next

Post: l̂s(z,y)

Unfold the precondition l̂s(x,y)

Case 1: holds because (x = y) and assume(x != y) implies false

Case 2: holds by matching z with t

Shortcomings

1 Recursion Divergence: when the “recursion” in the recursive rules is
structurally dissimilar to the program code

2 Generalization of Predicate: when the predicate describing a loop
invariant or a function is used later to prove a weaker property

(occurs often in practice, especially in iterative programs)

Recursion Divergence

When the “recursion” in the recursive rules is structurally dissimilar to
the program code

Pre: l̂s(x,y) ∗ (y 7→)
z = y.next

Post: l̂s(x,z)

Fundamentally, it is about relating two definitions of a list segment:
(recurse rightwards, and recurse leftwards)

l̂s(x,y)
def
= x=y ∧ emp | x6=y ∧ (x7→t) * l̂s(t,y)

ls(x,y)
def
= x=y ∧ emp | x6=y ∧ (t7→y) * ls(x,t)

(sometimes inevitable, e.g., queue implementation using list segment)

Generalization of Predicate:

When the predicate describing a loop invariant or a function is used
later to prove a weaker property

sorted list(x, len, min) |= list(x, len)

ls(x, y) * list(y) |= list(x)

What is Needed: INDUCTION

Traditional works on automated induction generally require variables
of inductive type (so that the notions of base case and induction step
are well-defined)

Our predicates are (user-)defined over pointer variables, which are not
inductive

1 Introduction

2 The Specification Language

3 Intuition behind Our Induction Rules

4 Some Examples

5 Future Work

The Specification Language

We use the language proposed by Duck et al. [2013], a logic with the
features of explicit heaps and a separation operator

It facilitates symbolic execution and therefore VC generation
Our induction method is not confined to this language

E.g. the below defines a skeleton list (we inherit the CLP semantics)

list(x , L) :- x = null, L l ∅.
list(x , L) :- x 6= null, L l (x 7→t) ∗ L1, list(t, L1).

(note that ∗ applies to terms, and not predicates as in traditional
Separation Logic)

1 Introduction

2 The Specification Language

3 Intuition behind Our Induction Rules

4 Some Examples

5 Future Work

General Cut-Rule

(cut)
L1 |= A L2 ∧ A |= R

L1 ∧ L2 |= R

Trivial from the deduction point of view (top to bottom)

For proof derivation (bottom to top), obtaining an appropriate A is
tantamount to a magic step

In manual proofs, we perform this magic step all the time

Automating this step is extremely hard

Induction Rule 1

(i-1)
L1 |= A L2 ∧ A |= R

L1 ∧ L2 |= R
···

L1 |= A is “the same” as some obligation previously encountered in

the proof path (indicated by · · · above), which acts as an induction

hypothesis, thus L1 |= A will be discharged immediately

In other words, the proof path gives us a systematic way to discover
the magic formula A

Induction Rule 2

(i-2)
L1 |= A L2 ∧ A |= R

L1 ∧ L2 |= R
···

L2 ∧ A |= R is “the same” as some obligation previously

encountered in the proof path (indicated by · · · above), which acts as

an induction hypothesis, thus L2 ∧ A |= R will be discharged

immediately

Again, the proof path gives us a systematic way to discover the magic
formula A

Summary

Our automated induction rules allow for

a systematic method to discover A (in the cut-rule)

application of induction to discharge a proof obligation, thus we only
need to proceed with the remaining obligation

A technical challenge is to ensure induction applications do not lead
to circular (i.e., wrong) reasoning

Example (simplified by ignoring heaps)

even(x) :- x = 0.
even(x) :- y = x − 2, even(y).

m4(x) :- x = 0.
m4(x) :- z = x − 4, m4(z).

m4(x) |= even(x)

Unfold-and-Match will not work: there always remains obligation with
predicate m4 in the LHS and predicate even in the RHS

Example: Induction Works

(lu)

(ru)

(smt)
True

x=0 |= x=0

x=0 |= even(x)

m4(z) |= even(z)

True

z=x−4, even(z) |= y=x−2, t=y−2, even(t)
(smt)

z = x− 4, even(z) |= y = x− 2, even(y)
(ru)

z = x− 4, even(z) |= even(x)
(ru)

z = x− 4, m4(z) |= even(x)
(i-1)

m4(x) |= even(x)

Example: Induction Works

(lu)

(ru)

(smt)
True

x=0 |= x=0

x=0 |= even(x)
...

m4(x) |= even(x)

Example: Induction Works

(lu)

(i-1)
m4(z) |= even(z)

(ru)

(ru)

(smt)
True

z=x−4, even(z) |= y=x−2, t=y−2, even(t)

z = x− 4, even(z) |= y = x− 2, even(y)

z = x− 4, even(z) |= even(x)

z = x− 4, m4(z) |= even(x)

m4(x) |= even(x)

Applying induction rule 1, we discover even(z) as a candidate for A.

This step allows us to “flip” the predicate even(z) into the LHS so
that subsequently Unfold-and-Match can work.

1 Introduction

2 The Specification Language

3 Intuition behind Our Induction Rules

4 Some Examples

5 Future Work

Some Examples

Proving commonly-used “lemmas” (or “axioms”); many existing
systems simply accept them as facts from the users

sorted list(x ,min) |= list(x)

sorted list1(x , len,min) |= list1(x , len)

sorted list1(x , len,min) |= sorted list(x ,min)

sorted ls(x , y ,min,max)∗sorted list(y ,min2) ∧ max ≤ min2 |=sorted list(x ,min)

l̂s1(x , y , len1) ∗ l̂s1(y , z , len2) |= l̂s1(x , z , len1+len2)

ls1(x , y , len1) ∗ list1(y , len2) |= list1(x , len1+len2)

l̂s1(x , last, len) ∗ (last 7→ new) |= l̂s1(x , new , len + 1)

avl(x , hgt,min,max , balance) |= bstree(x , hgt,min,max)

bstree(x , height,min,max) |= bintree(x , height)

· · ·

(running time ranges from 0.2 – 1 second per benchmark)

Some Examples

Eliminate the usage of lemmas: it indeed runs faster
at a node, we only look at the available induction hypotheses (0 – 3)
other systems look at all the “lemmas” (or “axioms”)

Table: Verification of Open-Source Libraries

Program Function Time per Function

glib/gslist.c
Singly
Linked-List

find, position, index,
nth,last,length,append,
insert at pos,merge sort,
remove,insert sorted list

<1s

glib/glist.c
Doubly
Linked-List

nth, position, find,
index, last, length

<1s

OpenBSD/
queue.h
Queue

simpleq remove after,
simpleq insert tail,
simpleq insert after

<1s

ExpressOS/
cachePage.c

lookup prev,
add cachepage

<1s

linux/mmap.c insert vm struct <1s

1 Introduction

2 The Specification Language

3 Intuition behind Our Induction Rules

4 Some Examples

5 Future Work

What Next?

Improve the robustness

e.g. works for A |= B, but might fail if we strengthen A (or weaken B)

having too strong antecedent (or too weak consequent) is an obstacle
to the usage of induction

Questions?

J. Brotherston, D. Distefano, and R. L. Petersen. Automated cyclic
entailment proofs in separation logic. In CADE, 2011.

W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification
of shape, size and bag properties via user-defined predicates in
separation logic. In SCP, pages 1006–1036, 2012.

G. Duck, J. Jaffar, and N. Koh. A constraint solver for heaps with
separation. In CP, LNCS 8124, 2013.

X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for
structure, data, and separation. In PLDI, pages 231–242, 2013.

Related Work

hip/sleek (Chin et al. [2012]): a very comprehensive system
supporting specifications written in SL

dryad (Qiu et al. [2013]): more deterministic algorithm where
unfolding is guided by program footprint

“Cyclic Proof” (Brotherston et al. [2011]): a theory to ensure sound
termination of cyclic proof paths. This is similar to deciding if an
induction application is valid.

	Introduction
	The Specification Language
	Intuition behind Our Induction Rules
	Some Examples
	Future Work

