
Lazy Symbolic Execution for Enhanced Learning

Duc-Hiep Chu, Joxan Jaffar, and Vijayaraghavan Murali

National University of Singapore
hiepcd,joxan,m.vijay@comp.nus.edu.sg

Abstract. The performance of symbolic execution based verifiers relies
heavily on the quality of “interpolants”, formulas which succinctly de-
scribe a generalization of states proven safe so far. By default, symbolic
execution along a path stops the moment when infeasibility is detected
in its path constraints, a property we call “eagerness”. In this paper,
we argue that eagerness may hinder the discovery of good quality inter-
polants, and propose a systematic method that ignores the infeasibility
in pursuit of better interpolants. We demonstrate with a state-of-the-
art system on realistic benchmarks that this “lazy” symbolic execution
outperforms its eager counterpart by a factor of two or more.

1 Introduction

Symbolic execution has been largely successful in program verification, testing
and analysis [16, 24, 28, 14, 13]. It is a method for program reasoning that uses
symbolic values as inputs instead of actual data, and it represents the values
of program variables as symbolic expressions on the input symbolic values. As
symbolic execution reaches each program point along different paths, different
“symbolic states” are created. For each symbolic state, a path condition is main-
tained, which is a formula over the symbolic inputs built by accumulating con-
straints that those inputs must satisfy in order for execution to reach the state.
A symbolic execution tree depicts all executed paths during symbolic execution.

We say that a state is infeasible if its path condition is unsatisfiable, there-
fore one obviously cannot reach an error location from this state. Whenever
an infeasible state is encountered, symbolic execution will backtrack along the
edge(s) just executed. In that regard, symbolic execution by default is eager.
This eagerness has been considered as a clear advantage of symbolic execution,
in comparison with Abstract Interpretation (ai) [7] or Counterexample-Guided
Abstraction Refinement (cegar) [6], since it avoids the exploration of infeasible
paths which could block exponentially large symbolic trees in practice.

This paper considers symbolic execution in the context of software verifi-
cation. One main challenge is to address the path explosion problem. The ap-
proaches of [16, 24, 15, 14] tackle this fundamental issue by eliminating from the
model those facts which are irrelevant or too-specific for proving the unreachabil-
ity of the error nodes. This “learning” phase consists of computing interpolants
in the same spirit of conflict-driven learning in sat solvers. Informally, the in-
terpolant at a given program point can be seen as a formula that succinctly
captures the reason of infeasibility of paths which go through that program

point. In other words it succinctly captures the reason why paths through the
program point are safe. As a result, if the program point is encountered again
through a different path such that its path condition implies the interpolant, the
new path can be subsumed, because it can be guaranteed to be safe. Interpolation
has been empirically shown to be crucial in scaling symbolic execution because
it can potentially result in exponential savings by pruning large sub-trees. It is
also generally known that the quality of interpolants greatly affects the amount
of savings provided.

This is where a conflict between eagerness and learning arises. Eagerly stop-
ping and backtracking at an infeasible state can make the learned interpolants
unnecessarily too restrictive – while the interpolant would typically capture the
reason for infeasibility of the state, the infeasibility could have nothing to do
with the safety of the program. In practice, safety properties often involve a
small number of variables whereas conditional expressions, which act as guards
by causing infeasibility in paths, could be on any unrelated variable. Ultimately,
this causes the (restrictive) interpolant to disallow subsumption in future, miti-
gating its benefit. In other words, eagerness hinders a property-directed approach.

In this paper, we propose a new method to enhance the learning of power-
ful interpolants but without losing the intrinsic benefits of symbolic execution.
Whenever an infeasible path is encountered, instead of backtracking immedi-
ately, we selectively abstract the infeasible state so that it becomes feasible, and
proceed with the search. By performing such an abstraction, we say that we have
entered speculation mode. More generally, as we progressively abstract away in-
feasibility from a symbolic path, we are exhibiting a property-directed strategy,
i.e., ignoring the infeasibility along the path until the real reason why the path
is safe is found. Note that the sole purpose of speculation is to find better inter-
polants – we already know any path with an infeasible prefix is safe.

However, since exploration of infeasible states is in general a wasteful effort,
we subject the speculation to a bound. This mitigates the potential blowup of
the speculative search, while still retaining the possibility of discovering good
interpolants. Intuitively, this bound should be at least linearly related to the
program size: anything less than this could make the speculation phase arbitrar-
ily short. It is a main contribution of this paper, that in the other direction, a
linear bound is good enough.

Finally, we remark that though this paper studies and quantifies the “en-
hanced learning” for symbolic execution in the setting of static analysis, its
impact is relevant to runtime verification as well. In our previous work [13], we
have demonstrated the benefits of interpolation in speeding up concolic testing
for better coverage. By being lazy, we expect the enhanced interpolants to result
in further speedup. As another example, Navabpour et al. [25] propose a method,
which leverages symbolic execution to predict the program’s execution path, in
order to effectively reduce the overhead of time-triggered runtime verification
(TTRV). In fact, improvements in symbolic execution, as demonstrated in this
paper, can lead to improvements in their runtime verification.

2 Examples

We first exemplify the case when (eager) symbolic execution is clearly not an
efficient way to conduct a proof. For the programs in Fig. 1, assume (1) the
boolean expressions ei do not involve the variables x and y, and (2) the desired
postcondition is y ≤ n for some constant n > 0. A path expression is of the form
E1∧E2∧· · ·∧En where each Ei is either ei or its negation. Note that each of the
(2n) path expressions represents a unique path through each of the programs.

x = y = 0
if (e1) y++ else x++
if (e2) y++ else x++
...
if (en) y++ else x++

(a) Lazy is Good

x = y = 0
if (e1) y += 2
if (e2) y += 2
...
if (en) y += 2

(b) Eager is Good

x = y = 0
if (e1) y++ else x++
...
if (ej) y++ else y = n+1
...
if (en) y++ else x++

(c) Lazy is Still Better

Fig. 1: Proving y ≤ n: Eager vs Lazy

Given the first program in Fig. 1(a), we can reason that the postcondition y ≤ n
always holds, without considering the satisfiability of the path expressions. Us-
ing symbolic execution, in contrast, many of the unsatisfiable path expressions
need to be detected and worse, their individual reasons for unsatisfiability (the
“interpolants”) need to be recorded and managed. Note that if we used a ce-
gar approach [6] here, where abstraction refinements are performed only when a
spurious counter-example is encountered, we would have a very efficient (linear)
proof.

In the next program in Fig. 1(b), slightly modified from the previous, we
present a dual and opposite situation. Note that the program is safe just if,
amongst the path expressions that are satisfiable, less than n/2 of these involve
a distinct and positive expression ei (as opposed to the negation of ei), for i
ranging from 1 to n. This means that the number of times the “then” bodies
of the if-statements are (symbolically) executed is less than n/2. Here, it is in
fact necessary to record and manage the unsatisfiable path expressions as they
are encountered during symbolic execution. cegar, in contrast, would require
a large number of abstraction refinements in order to remove counter-examples
arising from not recognizing the unsatisfiability of “unsafe” path expressions, i.e.
those corresponding to n/2 or more increments of y.

In principle, a typical program would correspond to being in between the
above two extreme cases in Fig. 1(a) and 1(b). Our key intuition, however, is
that in fact a typical program lies closer to the first example rather than the
second, because in practice safety properties are typically on a small subset of
variables, whereas program guards, which are the cause of infeasibilities, can be
on any (unrelated) variables. This intuition is later confirmed empirically.

For the final example program in Fig. 1(c), assume that all and only the
path expressions which contain the subexpression ej are unsatisfiable. (In other
words, the only way to execute the jth if-statement is through its “then” body.)
Here we clearly need to detect the presence of the expression ej and not any of

the other expressions. More generally, we argue that while some path expressions
must be recorded and managed, this number is small. The challenge is, of course,
is how to find these important path expressions, which is precisely the objective
of our speculation algorithm. We next exemplify this.

context1 : y = 4 ∧ x > 0
context2 : y ≤ 3 ∧ x ≤ 1

`1 if (x == 1)
`2 x++;

else
`3 x += 2;

`4 if (x + y >= 6)
`5 y += 2;

else
`6 y++;

if (y > 100) error();

y=4,x>0!

x==1! x≠1!

x++!

x+y≥6! x +y<6!

y+=2!

x+=2!

y≤3,x≤1!

x==1! x≠1!

x++! x+=2!

x+y ≥6! x +y<6!

y++!

ι4:{x+y≥6,y≤98}

ι2:{x+y≥5,
y≤98}

{y≤100}

ι4:{x+y<6,y≤99}

ι2:{x+y<5,
y≤99}

ι3:{x+y≥4,
y≤98}

ι3:{x+y <4,
 y≤99 }

{y≤100}

ι5:{y≤98} ι6:{y≤99}

ι1:{y≤98,x+y≥5}

Fig. 2: A Symbolic Execution (Eager) Tree with Learning

Consider the program fragment in Fig. 2 executed under two different initial
contexts: y = 4 ∧ x > 0 and y ≤ 3 ∧ x ≤ 1. In both contexts, the program
is safe because y ≤ 100 at the end. Throughout the example, assume weakest
preconditions (WP) are used as interpolants.

Symbolic execution (eager) would start at program point `1 with the first
context y = 4 ∧ x > 0. Assume it first takes the then branch with condition
x==1, executing x++ and reaching `4. Proceeding along the then branch from
`4, it executes y+=2 and reaches the end of the safe path, generating the (WP)
interpolant y ≤ 98 at `5. Now from `4, it finds that the else branch is infeasible as
the path condition y = 4∧x > 0∧x = 1∧x′ = x+1∧x′+y < 6 is unsatisfiable.
Being eager, symbolic execution would immediately backtrack, and to preserve
this infeasibility, it would learn the interpolant x′ + y ≥ 6. Combining the then
and else body’s interpolants, it would generate x′ + y ≥ 6 ∧ y ≤ 98 at `4 (note
that in Fig. 2 we project the formula on the original variable names). Passing
this back through WP propagation would result in x+ y ≥ 5 ∧ y ≤ 98 at `2.

Now, executing the else body x+=2 from `1, it would reach `4 with the path
condition y = 4 ∧ x > 0 ∧ x 6= 1 ∧ x′ = x + 2, which implies the interpolant
x′ + y ≥ 6 ∧ y ≤ 98. Therefore the path would be subsumed (dotted line).
Propagating this interpolant through x+=2 would result in x + y ≥ 4 ∧ y ≤ 98
at `3. Now, combining the then and else body’s interpolant at `1 would result in
the disjunction: (x = 1⇒ (x+y ≥ 5∧y ≤ 98))∧ (x 6= 1⇒ (x+y ≥ 4∧y ≤ 98)).
For the sake of clarity, we strengthen this to y ≤ 98 ∧ x+ y ≥ 5, but we assure
the reader that our discussion is not affected by this. Thus, the final symbolic
execution tree explored for this context will be the one on the left in Fig. 2.

Now, when the program fragment is reached along the second context y ≤
3 ∧ x ≤ 1, subsumption cannot take place at `1 as the context does not imply
the interpolant y ≤ 98 ∧ x+ y ≥ 5. Symbolic execution would therefore proceed
to generate the symbolic tree shown on the right. It is worth noting that even if
the program was explored with the order of the contexts swapped, subsumption
cannot take place at the top level.

Consider now our lazy symbolic execution process invoked on this program.
We would perform symbolic execution exactly the same as before, except when
the unsatisfiable path condition y = 4 ∧ x > 0 ∧ x = 1 ∧ x′ = x+ 1 ∧ x′ + y < 6
is encountered, instead of backtracking, we selectively abstract the formula to
make it satisfiable. Since we are doing forward symbolic execution, we selectively
abstract by deleting the constraint(s) from the latest guard that we encountered
(i.e., x′ + y < 6) to make the formula satisfiable.1

ι6:{y≤99} ι5:{y≤98}

y=4,x>0!

x==1! x≠1!

x++!

x+y≥6! x +y<6!

y++!

x+=2!

y≤3!
x≤1!

ι4:{y≤98}

ι2:{y≤98} ι3:{y≤98}

{y≤100}

y+=2!

{y≤100}

ι1:{y≤98}

Fig. 3: Lazy Symbolic Execution Tree

After performing selective abstrac-
tion, we enter “speculation mode”
with the abstracted path condition
y = 4 ∧ x > 0 ∧ x = 1 ∧ x′ =
x + 1. A problem now is that in
general, the sub-tree underneath the
infeasible branch may be exponen-
tially large, exploring which is waste-
ful as we already know that it is safe.
Therefore it is necessary to impose a
bound on the speculative search. We
remark on our design choice of such
a bound in later technical Sections.

Triggering speculation at `4, we
execute the statement y++ at `6
and reach the end of the (safe)
path. Speculation has now succeeded,
hence we annotate `6 with y ≤ 99.
Combining the interpolants at `4, we

get y ≤ 98. Propagating it back through the tree as shown in Fig. 3 we get the
interpolant y ≤ 98 at `1. Now, when the program fragment is reached along the
second context y ≤ 3 ∧ x ≤ 1, the interpolant is implied at `1, and the entire
tree can be subsumed at the top level. Note that we applied strengthening of
WP as before, but we assure that even without strengthening the subsumption
will still take place.

This example has shown that speculation can potentially result in exponen-
tial savings. The reason speculation works in practice is that safety properties
are only on a small subset of variables whereas program guards that cause in-
feasibility can be on any of them. Temporarily ignoring the infeasibility helps

1 In principle, selective abstraction can be done in many ways, for instance, by also
deleting y = 4, x′ = x+ 1 or any combination. We defer to Section 5 the reasoning
behind our design choice of deleting the latest guard.

in discovering interpolants closely related to the safety, such as those in Fig. 3,
rather than interpolants that blindly preserve the infeasibility, such as those in
Fig. 2. In Section 5, we empirically show that the exponential gains provided by
speculation clearly outweigh its cost.

3 Preliminaries

Syntax. We restrict our presentation to a simple imperative programming lan-
guage where all basic operations are either assignments or assume operations,
and the domain of all variables are integers. The set of all program variables
is denoted by Vars. An assignment x := e corresponds to assign the evaluation
of the expression e to the variable x. In the assume operator, assume(c), if the
Boolean expression c evaluates to true, then the program continues, otherwise
it halts. The set of operations is denoted by Ops. We then model a program
by a transition system. A transition system is a quadruple [Σ, I,−→, O] where
Σ is the set of program locations and I ⊆ Σ is the set of initial locations.
−→⊆ Σ×Σ×Ops is the transition relation that relates a state to its (possible)
successors executing operations. This transition relation models the operations
that are executed when control flows from one program location to another. We

shall use `
op−−→ `′ to denote a transition relation from ` ∈ Σ to `′ ∈ Σ executing

the operation op ∈ Ops. Finally, O ⊆ Σ is the set of final locations.

Symbolic Execution. A symbolic state s is a triple 〈`, σ,Π〉. The symbol ` ∈ Σ
corresponds to the current program location. We will use special symbols for
initial location, `start ∈ I, final location, `end ∈ O, and error location `error ∈ O (if
any). W.l.o.g we assume that there is only one initial, final, and error location
in the transition system.

The symbolic store σ is a function from program variables to terms over
input symbolic variables. Each program variable is initialised to a fresh input
symbolic variable. The evaluation JcKσ of a constraint expression c in a store σ
is defined recursively as usual: JvKσ = σ(v) (if c ≡ v is a variable), JnKσ = n
(if c ≡ n is an integer), Je opr e

′Kσ = JeKσ opr Je′Kσ (if c ≡ e opr e
′ where e, e′

are expressions and opr is a relational operator <,>,==, ! =, >=, <=), and
Je opa e

′Kσ = JeKσ opa Je′Kσ (if c ≡ e opa e
′ where e, e′ are expressions and opa

is an arithmetic operator +,−,×, . . .).
Finally, Π is called path condition, a first-order formula over the symbolic

inputs that accumulates constraints which the inputs must satisfy in order for
an execution to follow the particular corresponding path. The set of first-order
formulas and symbolic states are denoted by FOL and SymStates, respectively.
Given a transition system [Σ, I,−→, O] and a state s ≡ 〈`, σ,Π〉 ∈ SymStates,

a ‘symbolic step’ of transition t : `
op−−→ `′ returns another symbolic state s′

defined as:

s′ ≡ SYMSTEP(s, t) ,

{
〈`′, σ,Π ∧ JcKσ〉 if op ≡ assume(c)
〈`′, σ[x 7→ JeKσ], Π〉 if op ≡ x := e

(1)

Given a symbolic state s ≡ 〈`, σ,Π〉 we define JsK : SymStates → FOL as the
formula (

∧
v ∈ Vars JvKσ) ∧Π where Vars is the set of program variables.

A symbolic path π ≡ s0 · s1 · ... · sn is a sequence of symbolic states such that
∀i · 1 ≤ i ≤ n the state si is a successor of si−1, denoted as SUCC(si−1, si). A
path π ≡ s0 ·s1 · ... ·sn is feasible if sn ≡ 〈`, σ,Π〉 such that JΠKσ is satisfiable. If
` ∈ O and sn is feasible then sn is called terminal state. If JΠKσ is unsatisfiable
the path is called infeasible and sn is called an infeasible state. If there exists
a feasible path π ≡ s0 · s1 · ... · sn then we say sk (0 ≤ k ≤ n) is reachable
from s0. A symbolic execution tree contains all the execution paths explored
during the symbolic execution of a transition system by triggering Equation (1).
The nodes represent symbolic states and the arcs represent transitions between
states. Verification is done by exploring the symbolic execution tree and ensuring
that the error location `error is not reachable. Finally, we define a “selective
abstraction” operator ∇ : FOL × FOL that accepts an unsatisfiable formula Π
and returns a satisfiable formula that is an abstraction of Π.

Interpolation. The main challenge for symbolic execution is the path explosion
problem. This issue has been addressed using the concept of interpolation.

Definition 1 (Craig Interpolant). Given two formulas A and B such that
A ∧ B is unsatisfiable, a Craig interpolant [8], INTP(A,B), is another formula
Ψ such that (a) A |= Ψ , (b) Ψ ∧B is unsatisfiable, and (c) all variables in Ψ are
common to A and B.

An interpolant allows us to remove irrelevant information in A that is not
needed to maintain the unsatisfiability of A ∧ B. That is, the interpolant cap-
tures the essence of the reason of unsatisfiability of the two formulas. Efficient
interpolation algorithms exist for quantifier-free fragments of theories such as
linear real/integer arithmetic, uninterpreted functions, pointers and arrays, and
bitvectors (e.g., see [5] for details) where interpolants can be extracted from the
refutation proof in linear time on the size of the proof.

Definition 2 (Subsumption check). Given a current symbolic state s ≡
〈`, σ, ·〉 and an already explored symbolic state s′ ≡ 〈`, ·, ·〉 annotated with the
interpolant Ψ , we say s is subsumed by s′, SUBSUME(s, 〈s′, Ψ〉), if JsKσ |= Ψ .

To understand the intuition behind the subsumption check, it helps to know
what an interpolant at a node actually represents. An interpolant Ψ at a node
s′ succinctly captures the reason of infeasibility of all infeasible paths in the
symbolic tree rooted at s′. Let us call this tree T1. Then, if another state s at `
implies Ψ , it means the tree rooted at s, say T2, has exactly the same or more
(in a superset sense), infeasible paths compared to T1. In other words, T2 has
exactly the same, or less feasible paths (in a subset sense) compared to T1. Since
T1 did not contain any feasible path that was buggy, we can guarantee the same
for T2 as well, thus subsuming it.

Eager vs. Lazy. We say that a symbolic execution approach is eager if the
successor relation is defined only for feasible states. In other words, when we

encounter an infeasible state, we immediately backtrack and compute an in-
terpolant, succinctly capturing the reason of the infeasibility. Though different
systems might employ different search strategies for symbolic execution (our for-
mulation above is called forward symbolic execution [20]), it is worth to note
that all common symbolic execution engines are indeed eager. This eagerness
has been considered as a clear advantage of symbolic execution, since it avoids
the consideration of infeasible paths, which could be exponential in number.

However, with learning (interpolation), being eager might not give us the
best performance. The intuition behind this is that we are using the learned
interpolant from T1 to subsume T2, which has less feasible paths than T1. There-
fore, if T1 itself has very few feasible paths due to eagerness, it is unlikely that
the learned interpolant would be able to subsume many of such T2s.

4 Algorithm

We present our algorithm as a symbolic execution engine with interpolation and
speculative abstraction. In Fig. 4, the recursive procedure SymExec is of the type
SymExec : SymStates × N → FOL ∪ {ε}. It takes two parameters – a symbolic
state s typically on which to do symbolic execution, and a number representing
the current level of speculative abstraction, which we will define soon. Its return

Assume initial state s0 ≡ 〈`start, ·, true〉
〈1〉 Initially : SymExec(s0, 0)

function SymExec(s ≡ 〈`, σ,Π〉, AbsLevel)
〈2〉 if AbsLevel > 0 then
〈3〉 if (bounds violated) or (` ≡ `error) then return ε endif
〈4〉 else if ` ≡ `error then report error and halt
〈5〉 endif

〈6〉 if TERMINAL(s) then Ψ := true

〈7〉 else if ∃ s′ ≡ 〈`, ·, ·〉 annotated with Ψ s.t. SUBSUME(s, 〈s′, Ψ ′〉) then Ψ := Ψ
′

〈8〉 else if INFEASIBLE(s) then
〈9〉 s′ := 〈`, σ,∇(Π)〉
〈10〉 Ψ

′
:= SymExec(s′, AbsLevel + 1)

〈11〉 if Ψ
′ ≡ ε then Ψ := false else Ψ := Ψ

′
endif

〈12〉 if AbsLevel ≡ 0 then clear data on bounds endif
〈13〉 else
〈14〉 Ψ := true
〈15〉 foreach transition t: ` −−→ `′ do
〈16〉 s′ := SYMSTEP(s, t)

〈17〉 Ψ
′

:= SymExec(s′, AbsLevel)

〈18〉 if Ψ
′ ≡ ε then return ε

〈19〉 else Ψ := Ψ ∧ INTP(Π, constraints(t) ∧ ¬ Ψ ′
)

〈20〉 endfor
〈21〉 endif
〈22〉 annotate s with Ψ and return (Ψ)
end function

Fig. 4: A Framework for Lazy Symbolic Execution with Speculative Abstraction

value is a FOL formula representing the interpolant it generated at s. A special
value of ε is used to signify failure of speculation.

Initially, SymExec is called with the initial state s0 with `start as the program
point, an empty symbolic store, and the path condition true. For clarity, ignore
lines 2-5 which we will come to later. Lines 6-12, represent the three base cases
of eager symbolic execution in general – terminal, subsumed and infeasible node
(of course, in our lazy method infeasible node is not a base case). In line 6, if the
current symbolic state s is a terminal node (defined by ` being the same as `end),
we simply set the current interpolant Ψ to true, as the path is safe and there
is no infeasibility to preserve. In line 7, the subsumption check is performed to
see if there exists another symbolic state s′ at the same program point ` such
that s′ subsumes s (see Definition 2). If so, the current interpolant Ψ is set to be

the same as the subsuming node’s interpolant Ψ
′
. Note that this is an important

case for symbolic execution to scale as it can result in exponential savings.
In line 8, we check if the current state s is infeasible, defined by JsKσ be-

ing unsatisfiable. Normally at this point, eager symbolic execution would simply
generate the interpolant false to denote the infeasibility of s and return. For lazy
symbolic execution, we begin our speculation procedure here. Line 9 creates a
new symbolic state s′ such that it has the same program point ` and symbolic
store σ as s, but its (unsatisfiable) path condition Π is selectively abstracted
using ∇ to make the new path condition, which is satisfiable. In our implemen-
tation of ∇, since SymExec does forward symbolic execution, the path condition
would have been feasible until the preceding state whose successor is s. That
is, the state s′′ such that SUCC(s′′, s) must have been a feasible state. Hence
simply setting Π to the path condition of s′′ would make it satisfiable. This
mimics deleting the latest constraint(s) from Π that caused its infeasibility. In
Section 5, we discuss the reasons for implementing ∇ in this way.

Once the abstraction is made, we now speculate by recursively calling SymExec
with s′ and incrementing the abstraction level by 1. An abstraction level greater
than 0 means that we are under speculation mode. SymExec essentially performs
symbolic execution on the selectively abstracted state but with a condition – fo-
cus now on lines 2-5. Running under speculation mode, if at any point the bound
is violated or if the error location `error is encountered, it means the speculation
failed. In this case, we return a special value ε to signify the failure (line 3).
Of course, if we are not speculating and `error is encountered (line 4), then it is
a real error to be reported and the entire verification process halts. Otherwise,
SymExec proceeds to normally explore s and finally return an interpolant.

Now in line 10, the interpolant returned from speculation is stored in Ψ
′
.

If ε was returned, indicating that speculation failed, we simply resort to using
false as the interpolant, just like a fully eager symbolic execution procedure.
Otherwise, we use the interpolant computed by speculation (line 11). Finally,
in line 12, if the current abstraction level is 0 (i.e., we are at the ‘root’ of the
speculation tree), then regardless of whether we succeeded or not, we reset all
the data that count towards the bounds. For instance, in our implementation,
we restrict the speculation to not explore more than one state per program point

`, which would result in a bound that is linear in the program’s size. In this case,
we have to maintain a count of the number of states explored for each program
point. At line 12 this data is cleared since the speculation has finished.

Note that there are two reasons why speculation can fail. A first reason is
simply that an abstracted guard is needed to avoid a counter-example. If this
guard corresponds to abstraction level 0, speculation resulted in nothing learnt
at this program point (but we could have learnt something from the start of spec-
ulation until encountering the counter-example, for descendant program points).
If however the guard abstraction is at a deeper level, the top-level invocation of
speculation still can learn new interpolants. The second reason why speculation
can fail is that the bound was exceeded. In this case, we put forward that, by
increasing the bound, it is not likely to result in significant learning. That is,
increasing the bound is a strategy of diminishing returns. We will return to this
point when we discuss certain statistics in Section 5.

If none of the base cases were activated, SymExec proceeds to unwind the
path, in lines 13-20. It first initialises the interpolant Ψ to true. Then, for ev-
ery transition from the current program point `, it does the following. First
it performs a symbolic step (SYMSTEP) to obtain the next symbolic state s′

along the transition t : ` −−→ `′. Then, it recursively calls itself with s′ to

obtain an interpolant Ψ
′

for s′ (note that we are not speculating here so the
abstraction level is unchanged). Now, if the returned interpolant is ε, it means
further down some speculation resulted in failure. Hence it simply propagates
back this failure by returning ε (line 18). Otherwise, it computes the current
interpolant by invoking INTP on the path condition Π and the conjunction of
the constraints of the current transition, constraints(t), with the negation of

Ψ
′

(where Π ∧ constraints(t) ∧ ¬Ψ ′ is unsatisfiable). The result is conjoined
with any existing interpolant (line 19). Finally, in line 22 the current state s is
annotated with the interpolant Ψ , which is then returned. This annotation is
persistent such that the subsumption check at line 7 can utilise this information.

On loop handling: In the presence of unbounded loops, symbolic execution
might not terminate in general. Handling unbounded loops, however, is often
considered as an orthogonal problem. Indeed, we were able to incorporate the
loop handling technique proposed by [15] into the implementation of our algo-
rithm without difficulty.

We conclude this section with some insights about the new interpolants dis-
covered by speculation. At the root of speculation, the eager algorithm would
have returned false as an interpolant. Therefore any other valid interpolant is
clearly better. However, is it the case that using the new (and better) interpolant
here, results in better interpolants higher up in the tree? Intuitively the answer
is yes, provided that the interpolation algorithm is, in some sense, well behaved.
We formalize this as follows.

Definition 3 (Monotonic Interpolation). The interpolation method used in
our algorithm is said to be monotonic if for all transition t, path condition Π,
and formulas Ψ1, Ψ2 • Ψ1 |= Ψ2 implies INTP(Π, constraints(t) ∧ ¬ Ψ1) |=
INTP(Π, constraints(t) ∧ ¬ Ψ2)

Monotonicity ensures that better interpolants at a program point translate
into better interpolants at a predecessor point. The supreme interpolation algo-
rithm, based on the weakest precondition, is of course monotonic. A more prac-
tical algorithm, however, may not be guaranteed to be monotonic. For example,
an algorithm which is based on computing an unsatisfiable core (i.e., simply
disregarding constraints which do not affect unsatisfiability), is in general not
monotonic because it can arbitrarily choose between choices of cores.

Nevertheless, we noticed in our experiments, detailed in Section 5, that new
interpolants from speculation do translate into better interpolants and this, in
turn, produces more subsumption. This indicates that the interpolation algo-
rithm employed in [14], is indeed relatively well behaved. Some random inspec-
tions of the interpolants obtained in the experiments showed that we often have
monotonic behavior in practice, although not theoretically. We show via concrete
statistics that as a result of this, we obtain fewer and yet better interpolants.

5 Implementation and Evaluation

We implemented our lazy algorithm on top of tracer [14], an eager symbolic
execution system, and made use of the same interpolation method and theory
solver presented in [14]. Let us now remark on our two design choices.

Selective abstraction: in principle, selective abstraction (∇) can be done in
many ways, formally, by deleting any “correction subset” [19] of the unsatis-
fiable formula. We implemented selective abstraction by deleting constraint(s)
from the latest guard that we encountered during forward symbolic execution.
The reason is two-fold. Firstly, deleting the latest guard guarantees the formula
to become satisfiable without requiring to compute any of its correction subsets
(the latest guard is trivially a minimal correction subset), which could be expen-
sive. Secondly, given an incremental theory solver, deleting the latest constraints
can be implemented more efficiently than deleting those encountered earlier. Al-
though we believe that more sophisticated analysis can be employed to make a
well-informed decision, the empirical results show that this approach works well
in practice.

Speculation bound: we used a linear bound for the speculation. In particular,
during speculation if a program point is visited more than once and it cannot
be subsumed, we stop the speculative search, and use the interpolant false at
the latest speculation point. Intuitively, anything less than a linear bound could
make speculation arbitrarily short, hence we need to give each program point
at least one chance to be explored. Our experiments confirm that often, a linear
bound that gives each program point at most one chance, is good enough.

We used as benchmarks sequential C programs from a varied pool – five device
drivers from the ntdrivers-simplified category of SV-COMP 2013 [2]: cdaudio,
diskperf, floppy, floppy2 and kbfiltr, two linux drivers qpmouse and tlan, an air
traffic collision avoidance system tcas, and two programs from the Mälardalen
WCET benchmark [21] statemate and nsichneu for which the safety property was

the approximate WCET. We chose only safe programs for our benchmarks as
they ensure a full search of the program’s state space. With unsafe programs,
if the error is encountered very early in the search process (e.g., due to good
heuristics), hardly any useful comparison can be drawn. All experiments are
carried out on an Intel 2.3 Ghz machine with 2GB memory.

Bench- CPA IMP TRACER
mark Time Time Time (sec) States #Interpolants

(sec) (sec) EAG LZY Speedup EAG LZY Red. EAG LZY Red.

cdaudio 19 30 41 23 1.78 4396 2864 35% 3854 2689 30%
diskperf 28 149 53 19 2.79 4309 1617 62% 4012 1514 62%
floppy 27 36 25 12 2.08 3535 1635 54% 3208 1534 52%
floppy2 98 40 42 29 1.45 5063 3153 38% 4536 2863 37%
kbfiltr 3 8 4 3 1.33 973 756 22% 860 691 20%
qpmouse 3 8 32 15 2.13 1313 779 41% 1199 723 40%
tlan T/O T/O 41 26 1.58 3895 2545 35% 3542 2324 34%
nsichneu 5 41 40 5 8.00 4481 1027 77% 4379 1018 77%
statemate 2 T/O 72 5 14.40 6680 616 91% 4370 471 89%
tcas 2 11 19 1 19.00 5500 369 93% 5248 348 93%
Total 367 683 369 138 2.67 40145 15361 62% 35208 14175 60%

Table 1. Verification Statistics for Eager and Lazy SE (A T/O is 180s (3 mins))

To give a perspective of where tracer stands in the spectrum of verifica-
tion tools, we compare its performance with two competitive verifiers cpa-
checker [30] (ABM version) and impact [23]. Of these, impact implements
an interpolation-based model checking procedure, whereas cpa-checker is a
hybrid of smt-based search and cegar. Since impact is not publicly available,
we use cpa-checker’s implementation of the impact algorithm [23].

For each benchmark, we record in the shaded columns in Table 1 the veri-
fication time (in seconds) of cpa-checker (CPA), impact (IMP) and tracer
with eager symbolic execution (TRACER EAG.), respectively. As it can be seen
tracer is generally faster than impact but sometimes slower than cpa-checker
so it can be roughly positioned between the two (closer to cpa-checker) in
terms of performance. This comparison is to show that we chose a competi-
tive verifier to implement our algorithm and we expect the same benefits to be
provided to other similar verifiers.

We now present the main results in the rest of Table 1. In the set of columns
labelled Time (sec) we show the verification time of tracer in seconds for each
benchmark. In this, the (shaded) column EAG which we just saw, performed
eager symbolic execution, while the LZY column performed lazy symbolic exe-
cution, and Speedup is the ratio of the two. It can be seen that in all programs,
laziness makes the verification much faster, providing an average speedup of
2.67. This also makes lazy tracer perform much better than eager tracer.
We notice enormous improvement for nsichneu, statemate and tcas, as these are
programs with a large number of infeasible paths and the safety property on a
small number of variables, the perfect scenario for our speculation to shine.

We move on to a more fine-grained measurement than time in the next set of
columns States, which shows the number of symbolic states tracer encountered
during verification. In total, we found that 40145 states were encountered with-
out speculation (EAG) and just 15361 states with speculation (LZY), a reduction
of about 62%. This shows that speculation results in more subsumption, which
thereby causes a reduction in the search space.

Next, we measure the improvement in memory provided by speculation. In
the set of columns #Interpolants, we show the total number of interpolants stored
by tracer at the end of the verification process. Interpolants typically con-
tribute to a major part of memory used by modern symbolic execution verifiers.
In this regard, laziness reduced the number of interpolants in tracer from 35208
(EAG) to 14175 (LZY), a reduction of 60% across all benchmarks.

We focus on the two metrics seen above: number of interpolants (#Inter-
polants), and amount of subsumption, in terms of states (States) encountered.
The critical point is the inverse relationship: laziness provided a much smaller
number of interpolants while simultaneously increasing subsumption. In other
words, the quality of interpolants discovered through speculation is enhanced.

We conclude this section with a few more statistics which, while not directly
linked to absolute performance, nevertheless shed additional insight. First, con-
sider the number of distinct program variables that are involved in the inter-
polants. In the case without speculation, we noticed across all benchmarks that
there were 363 such variables. In contrast, with speculation, the number is only
229. This means that many (134) variables were not required to determine the
safety of the program. They were being needlessly tracked by interpolants simply
to preserve infeasible paths.

Next consider the “success rate” of speculation: how often does speculation
find an alternative interpolant? For simplicity, consider only those speculations
triggered at the top-level of the algorithm (from abstraction level 0 to 1). We
found, across the benchmark programs, a rate of 40-90%, more often at the
higher end. This means that speculation returns something useful most of the
time. However, note importantly that even when speculation was not successful
at the top-level, there is likely to have been interpolants discovered at the lower
levels. These are interpolants one would have not found without speculation.

To elaborate on the success rate of 40-90%, programs having large number
of infeasible paths tend to produce a high success rate, because as per our key
intuition, many such paths will be unrelated to the safety. Similarly, programs
with few infeasible paths produce a low success rate. In our experiments, the
highest success rates (90%) were from nsichneu, tcas and statemate, which have
a large number of infeasible paths as mentioned before.

Finally, reconsider the bound. The above success rate also indicates that
there are a significant, though minor, number of failures. We wish to mention
that when we do fail, the overwhelming reason is not the bound, but instead,
the (spurious) counter-examples. In summary, the rather high rate of success,
and the rather low rate of failure caused by the bound, together suggest that
increasing the bound would be a strategy of diminishing returns.

6 Related Work and Concluding Discussion

Symbolic execution [17] has been widely used for program understanding and
program testing. We name a few notable systems: KLEE [3], Otter [26], and
SAGE [11]. Traditionally, execution begins at the first program point and then
proceeds according to the program flow. Thus symbolic execution is actually
forward execution. Recently, [20] proposed a variation, directed symbolic execu-
tion, making use of heuristics to guide symbolic execution toward a particular
target. This has shown some initial benefits in program testing.

For the purpose of having scalability in program verification, however, sym-
bolic execution needs to be equipped with learning, particularly in the form
of interpolation [16, 24, 15, 14, 1]. Due to the requirement of exhaustive search,
as in the case of this paper, these systems naturally implement forward sym-
bolic execution. Recently, interpolation has also been applied to the context of
concolic testing [13]. All the above-mentioned approaches can be classified as
eager symbolic execution. In other words, we do not continue a path when the
accumulated constraints are enough to decide its infeasibility.

In the domain of sat solving and hardware verification, property directed
reachability (PDR) [10] has recently emerged as an alternative to interpolation
[22]. Some notable extensions of PDR are [12, 4, 29]. However, the impact of
PDR to the area of software verification is still unclear. While such “backward”
execution has merits in terms of being goal directed, it has lost the advantage
of using the (forward) computation to limit the scope of consideration.

In contrast, our lazy symbolic execution preserves the intrinsic benefits of
symbolic execution while at the same time, by opening the infeasible paths se-
lectively, it enables the learning of property directed interpolants. We believe this
is indeed the reason for the efficiency achieved and demonstrated in Section 5.

The traditional cegar-based approach to verification may also be thought
of a “lazy”. This is because it starts from a coarsely abstracted model and
subsequently refines it. Such concept of laziness is, therefore, different from what
discussed in this paper. In the context of this paper, given a refined abstract
domain, a cegar-based approach is in fact considered as eager, since it avoids
traversal of infeasible paths, which are blocked by the abstract domain. Some of
such paths are indeed counter-examples learned from the previous phases. The
work [24] discussed this as a disadvantage of cegar-based approaches: they
might not recover from over-specific refinements. Our contribution, therefore, is
plausibly applicable in a cegar-based setting.

There is now an emerging trend of employing generic smt solvers for (bounded)
symbolic execution, and since modern smt solvers, e.g. [9], do possess the sim-
ilar power of interpolation – in the form of conflict clause learning or lemma
generation – we now make a few final comments in this regard.

First, note that lazy symbolic execution has no relation with the concept of
lazy smt. In particular, the dominating architecture dpll(T), which underlies
most state-of-the-art smt tools, is based on the integration of a sat solver and
one (or more) T -solver(s), respectively handling the Boolean and the theory-
specific components of reasoning. On the one hand, the sat solver enumerates

truth assignments which satisfy the Boolean abstraction of the input formula.
On the other hand, the T -solver checks the consistency in T of the set of literals
corresponding to the assignments enumerated. This approach is called lazy (en-
coding), and in contrast to the eager approach, it encodes an smt formula into
an equivalently-satisfiable Boolean formula and feeds the result to a sat solver.
See [27] for a survey.

Second, we note that though the search strategies used in modern dpll-based
smt solvers would be more dynamic and different from the forward symbolic ex-
ecution presented in this paper, it is safe to classify these smt solvers as eager
symbolic execution. This is because, in general, whenever a conflict is encoun-
tered, a dpll-based algorithm would analyze the conflict, learn and/or propagate
new conflict clauses or lemmas, and then immediately backtrack (backjump) to
some previous decision, dictated by its heuristics [18].

We believe that for the purpose of program verification, the benefit of be-
ing lazy by employing speculative abstraction, would also be applicable to smt
approaches. This is because, in general, we can always miss out useful (good)
interpolants if we have not yet seen the complete path. In this paper, we have
demonstrated that in verification, property directed learning usually outper-
forms learning from “random” infeasible paths. Eagerly stopping when the set
of constraints is unsatisfiable might prevent a solver from learning the conflict
clauses which are more relevant to the safety of the program. In smt solvers,
the search, however, is structured around the decision graph. Therefore, some
technical adaptations to our linear bound need to be reconsidered. For example,
a bound based on the number of decisions seems to be a good possibility. More-
over, in smt setting, there are no error locations. One possible idea is, when
compiling a verification problem into smt input format, we specially “mark”
the constraints guarding the error locations, so that unsatisfiable cores involving
marked constraints can be favored over those not.

7 Conclusion

We presented a systematic approach to perform speculative abstraction in sym-
bolic execution in pursuit of program verification. The basic idea is simple: when
a symbolic path is first found to be infeasible, we abstract the cause of infeasibil-
ity and enter speculation mode. In continuing along the path, more abstractions
may be performed, while remaining in speculation mode. Crucially, speculation
is only permitted up to a given bound, which is a linear function of the program
size. A number of reasonably sized and varied benchmark programs then showed
that our speculative abstraction produced speedups of a factor of two and more.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based
algorithm for inter-procedural verification. In VMCAI, 2012.

2. D. Beyer. Second competition on software verification. In TACAS, 2013.

3. C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, 2008.

4. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Ic3 modulo theories via implicit
predicate abstraction. CoRR, 2013.

5. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in
satisfiability modulo theories. In TACAS’08, pages 397–412, 2008.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. CounterrExample-Guided
Abstraction Refinement. In CAV, 2000.

7. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis. In POPL, 1977.

8. W. Craig. Three uses of Herbrand-Gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Computation, 22, 1955.

9. L. De Moura and N. Bjørner. Z3: an efficient smt solver. In TACAS, 2008.
10. N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of property

directed reachability. In FMCAD, 2011.
11. P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox fuzzing for security

testing. Queue, 2012.
12. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT,

2012.
13. J. Jaffar, V. Murali, and J. Navas. Boosting Concolic Testing via Interpolation.

In FSE, 2013.
14. J. Jaffar, V. Murali, J. Navas, and A. Santosa. TRACER: A symbolic execution

engine for verification. In CAV, 2012.
15. J. Jaffar, J. Navas, and A. Santosa. Unbounded Symbolic Execution for Program

Verification. In RV, 2011.
16. J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for clp traversal.

In CP, 2009.
17. J. C. King. Symbolic Execution and Program Testing. Com. ACM, 1976.
18. D. Kroening and O. Strichman. Decision procedures: An algorithmic point of view,

2008.
19. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable

subsets of constraints. J. Automated Reasoning, 2008.
20. K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic execution.

In SAS, 2011.
21. Mälardalen WCET research group benchmarks. URL http://www.mrtc.md-

h.se/projects/wcet/benchmarks.html, 2006.
22. K. L. McMillan. Interpolation and SAT-based model checking. In 15th CAV,

volume 2725 of LNCS, pages 1–13. Springer, 2003.
23. K. L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.
24. K. L. McMillan. Lazy annotation for program testing and verification. In CAV,

2010.
25. S. Navabpour, B. Bonakdarpour, and S. Fischmeister. Path-aware time-triggered

runtime verification. In RV, 2012.
26. E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using symbolic evalu-

ation to understand behavior in configurable software systems. In ICSE, 2010.
27. R. Sebastiani. Lazy satisability modulo theories. JSAT, 2007.
28. S. W. Visser, C. Păsăreanu. Test input generation with java pathfinder. In ISSTA,

2004.
29. T. Welp and A. Kuehlmann. Qf bv model checking with property directed reach-

ability. In DATE, 2013.
30. D. Wonisch. Block Abstraction Memoization for CPAchecker. In TACAS, 2012.

