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Safety Critical Embedded Systems

@ Medical devices
@ Aircraft flight control systems

@ Automobiles

Pacemaker

Leadin
fight ventricle:

Is the use of Dynamic Memory Allocation safe?
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Worst-Case Memory Consumption Analysis

@ Compute an upper bound of the memory consumption
@ The bound should be sound and precise

Memory
N
Safe, Not precise Bound

Safe & Precise Bound
Exact Bound

Not Safe

> Time/Execution
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Worst-Case Memory Consumption Analysis

@ Memory is a non-cumulative resource, i.e. it can be acquired then
released. Example:

e high-water mark usage = 200
e net usage =0

x = malloc(n)

r=200

Traditional ILP-based (Integer Linear Programming) techniques for
cumulative resource, e.g. timing, is no longer applicable
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Symbolic Execution

@ Represents the values of program variables as symbolic expressions of
the input symbolic values

@ Path condition: a formula over the symbolic inputs, which those
inputs must satisfy in order for execution to follow that path

@ A path is infeasible if its path condition is unsatisfiable
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OUTLINE

@ Proposed Analysis Framework

© Example

© Evaluation
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Analysis Framework

@ Worst-case heap usage analysis

@ Loops and Recursions are bounded

e Loops can just be fully unrolled
o (valid assumption in in safety critical embedded systems)
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Analysis Framework

@ Build a symbolic execution tree from the input program
@ Track precisely the heap usage along all symbolic paths

© Generate an aggregated upper bound

Scalability?
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Scalable Symbolic Execution

e Our foundational work on WCET analysis [Chu and Jaffar 2011, Chu
and Jaffar 2013]

o Generalized form of dynamic programming
o Analyzed subtrees are summarized and reused

Total WCET: 22

9/26



Soundness of Reuse

o Interpolating infeasible paths
e 1 is an interpolant of sO, capturing the reason for infeasible paths in
the left subtree
o subsumption check: s1 =

Total WCET: 22
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Precision of Reuse

@ Witness path: The most resource consuming path

@ Witness check: Witness path must be feasible in the new context

Total WCET: 19
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Loop Unrolling with Summarization

@ Critical for computing precise bounds when loops are complicated
e Discover infeasible paths across iterations

. . . d1 ]
@ Scalability has been shown in our prior works C
e Summarize each loop iteration
o Reuse summarizations in later iterations
e Summarize a sequence of loop iterations
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Remaining Challenges

@ Memory is a non-cumulative resource
e For each summarization, we need two witnesses: a high-water mark
witness and a net-usage witness
o Needed when we combine summarizations of loop iterations

@ The amount of memory allocated/deallocated in different iterations
can be different, i.e. dynamic cost modelling
o The memory consumption in each subtree is summarized using a
symbolic expression

i=10
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Summarization in HWM Analysis

Comprises of:
@ an interpolant (as before)

@ witness conditions (as before, but now for two types of witness)

e dominating conditions (for each witness):

e a set of constraints over the program variables
e ensuring the witness path is the most resource consuming, i.e. still
dominating the other paths
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Summarization in HWM Analysis

@ When i/ =10, we have j +16 > 4+ 14

e /=10 is a trivial dominating condition
o a weaker condition is i > 2

i=10

11
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OUTLINE

@ Proposed Analysis Framework

© Example

© Evaluation
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a=20 a=30
x = malloc(20 x = malloc (20)
r=r+20 r=r+20

jz0

free(x)
r=r-20

y = malloc (a)
r=r+a

‘s i<o

iz0 r=r+b

z = malloc (b)
r=r-b

c=Rand() % b
z = malloc (c)
r=r+c
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At (8a), high-water mark witness: ([+,c])

c=Rand() % b
r=r+c

r=c
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At (8b), high-water mark witness: ([+,b])

c=Rand() % b c=Rand() % b
r=r+c

r=40+c @ r=40+b-b
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At (5a), high-water mark witness: ([+,a],[+,b])

<10a>

c=Rand() % b
r=r+c

r=40+c
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At (1a), the worst-case analysis is 50 + b

c=Rand()% b c=Rand()% b
r=r+c r=r+c

<10a>
'
1
'
r=c r=40+c r=40+b-b
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OUTLINE

@ Proposed Analysis Framework

© Example

© Evaluation
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Table 1

[Benchmark  TLOC]Input Parameters | Time[States[Reuses] Bound]
larson 614 |threads = 1, num_chunks = 100| 55.55 613 198 240050000
ndes 219[N.A. 21.21 643 201 11214
puzzle 197|N.A. 164.43| 1094 354 204
fasta 121[N.A. 0.23 91 17 755
chomp 401|N.A. 1.59 153 36 6800
statemate 1090 [N.A. 233.63| 3553 1296 64
nsicheneu 3144 |N.A. 791.75| 3639| 1376 112
shbench 121 |threads = 1, Nalloc = 100 554.39| 4461| 1408 43600
himenobmtxpa| 272 |N.A. 175.45| 1472 406 57344
dry 491|N.A. 0.3 142 39 112
F3
ffel (main) | 234| MAXWAVES = 8 523 8g 23107 MAXIEE
nsieve-bits 33|N.A. 4.74| 552 192 sz/8+ 4
ffbench 287|Asize = 10 138.56] 1550 508 262160
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Table 2

[Benchmark  [LOC[Input Parameters [ Time[States|Reuses|Bound]
cache-thrash | 120|threads = 1, iterations = 100| 7.96 344 108 1
cache-thrash | 120|threads = 2, iterations = 100| 8.00 329 103 1
cache-thrash | 120|threads = 1, iterations = 200{58.96 644 208 1
cache-thrash | 120|threads = 2, iterations = 200|57.60 629 203 1
cache-scratch| 126|threads = 1, iterations = 100| 9.32 350 108 9
cache-scratch| 126|threads = 2, iterations = 100| 9.26 338 104 18
cache-scratch| 126|threads = 1, iterations = 200|68.86 650 208 9
cache-scratch| 126|threads = 2, iterations = 200|69.40 638 204 18

objSize = 1, repetitions = 10
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@ Worst-case memory consumption analysis is important for safety
critical embedded system

@ Memory is a non-cumulative resource
o Acquired then later released

e Traditional ILP-based methods are no longer applicable

@ Symbolic Execution can be scalable
o Reuse is key
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Thank Youl!l!

Q& A
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