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Safety Critical Embedded Systems

Medical devices

Aircraft flight control systems

Automobiles

Is the use of Dynamic Memory Allocation safe?
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Worst-Case Memory Consumption Analysis

Compute an upper bound of the memory consumption

The bound should be sound and precise
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Worst-Case Memory Consumption Analysis

Memory is a non-cumulative resource, i.e. it can be acquired then
released. Example:

high-water mark usage = 200
net usage = 0
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Traditional ILP-based (Integer Linear Programming) techniques for
cumulative resource, e.g. timing, is no longer applicable
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Symbolic Execution

Represents the values of program variables as symbolic expressions of
the input symbolic values

Path condition: a formula over the symbolic inputs, which those
inputs must satisfy in order for execution to follow that path

A path is infeasible if its path condition is unsatisfiable
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OUTLINE

1 Proposed Analysis Framework

2 Example

3 Evaluation
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Analysis Framework

Worst-case heap usage analysis

Loops and Recursions are bounded
Loops can just be fully unrolled
(valid assumption in in safety critical embedded systems)
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Analysis Framework

1 Build a symbolic execution tree from the input program

2 Track precisely the heap usage along all symbolic paths

3 Generate an aggregated upper bound

Scalability?
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Scalable Symbolic Execution

Our foundational work on WCET analysis [Chu and Jaffar 2011, Chu
and Jaffar 2013]

Generalized form of dynamic programming
Analyzed subtrees are summarized and reused
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Soundness of Reuse

Interpolating infeasible paths
ψ is an interpolant of s0, capturing the reason for infeasible paths in
the left subtree
subsumption check: s1 |= ψ
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Precision of Reuse

Witness path: The most resource consuming path

Witness check: Witness path must be feasible in the new context
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Loop Unrolling with Summarization

Critical for computing precise bounds when loops are complicated
Discover infeasible paths across iterations

Scalability has been shown in our prior works
Summarize each loop iteration
Reuse summarizations in later iterations
Summarize a sequence of loop iterations
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Remaining Challenges

Memory is a non-cumulative resource
For each summarization, we need two witnesses: a high-water mark
witness and a net-usage witness
Needed when we combine summarizations of loop iterations

The amount of memory allocated/deallocated in different iterations
can be different, i.e. dynamic cost modelling

The memory consumption in each subtree is summarized using a
symbolic expression
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Summarization in HWM Analysis

Comprises of:

an interpolant (as before)

witness conditions (as before, but now for two types of witness)

dominating conditions (for each witness):
a set of constraints over the program variables
ensuring the witness path is the most resource consuming, i.e. still
dominating the other paths
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Summarization in HWM Analysis

When i = 10, we have i + 16 > 4 + 14
i = 10 is a trivial dominating condition
a weaker condition is i ≥ 2
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Example

i	<	0	 i	≥	0	

j	=	0	 j	≠	0	

<3>	

<2>	

<4>	

<6>	 <7>	

<8>	

<1>	
r	=	0	

<5>	

a	=	20	
x	=	malloc(20)	
r	=	r	+	20	

a	=	30	
x	=	malloc	(20)		
r	=	r	+	20	

j	≥	0	
j	<	0	
r	=	r	+	b	

<9>	 <10>	

<11>	

z	=	malloc	(b)		
r	=	r	-	b	

c	=	Rand()	%	b	
z	=	malloc	(c)		
r	=	r	+	c	

free(x)	
r	=	r	-	20	

	y	=	malloc	(a)		
	r	=	r	+	a	
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Example

At 〈8a〉, high-water mark witness: ([+,c])
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Example

At 〈8b〉, high-water mark witness: ([+,b])
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r	=	r	+	c	

r	=	r	-	20	

<8b>	

<9b>	

<11c>	

r	=	r	+	b	

r	=	r	+	a	

<10b>	

<11d>	

X	

j	<	0	

r	=	c	

r	=	40	

r	=	40	+	b	

j	≥	0	

j	<	0	

c	=	Rand()	%	b	
r	=	r	+	c	

<10a>	

r	=	0	

r	=	20	

r	=	40	+	c	

r	=	r	-	b	

r	=	40	+	b	-	b	

?	

19 / 26



Example

At 〈5a〉, high-water mark witness: ([+,a],[+,b])
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r	=	r	+	c	
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a	=	30	
r	=	r	+	20	

r	=	20	?	

20 / 26



Example

At 〈1a〉, the worst-case analysis is 50 + b

<2a>	

<6a>	

<3a>	

<7a>	

<4a>	

<8a>	

<5b>	

<1a>	

<5a>	

r	=	0	
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Table 1

Benchmark LOC Input Parameters Time States Reuses Bound

larson 614 threads = 1, num chunks = 100 55.55 613 198 240050000
ndes 219 N.A. 21.21 643 201 11214
puzzle 197 N.A. 164.43 1094 354 204
fasta 121 N.A. 0.23 91 17 755
chomp 401 N.A. 1.59 153 36 6800

statemate 1090 N.A. 233.63 3553 1296 64
nsicheneu 3144 N.A. 791.75 3639 1376 112

shbench 121 threads = 1, Nalloc = 100 554.39 4461 1408 43600
himenobmtxpa 272 N.A. 175.45 1472 406 57344
dry 491 N.A. 0.3 142 39 112

fft1 (main) 234 MAXWAVES = 8 5.23 88 23
16 * MAXSIZE

+ 64
nsieve-bits 33 N.A. 4.74 552 192 sz / 8 + 4
ffbench 287 Asize = 10 138.56 1550 508 262160
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Table 2

Benchmark LOC Input Parameters Time States Reuses Bound

cache-thrash 120 threads = 1, iterations = 100 7.96 344 108 1
cache-thrash 120 threads = 2, iterations = 100 8.00 329 103 1
cache-thrash 120 threads = 1, iterations = 200 58.96 644 208 1
cache-thrash 120 threads = 2, iterations = 200 57.60 629 203 1

cache-scratch 126 threads = 1, iterations = 100 9.32 350 108 9
cache-scratch 126 threads = 2, iterations = 100 9.26 338 104 18
cache-scratch 126 threads = 1, iterations = 200 68.86 650 208 9
cache-scratch 126 threads = 2, iterations = 200 69.40 638 204 18

objSize = 1, repetitions = 10
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Summary

Worst-case memory consumption analysis is important for safety
critical embedded system

Memory is a non-cumulative resource
Acquired then later released
Traditional ILP-based methods are no longer applicable

Symbolic Execution can be scalable
Reuse is key
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Thank You!!!

Q & A
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