
Interpolation Methods for Symbolic Execution

Duc-Hiep CHU
Advisor: Prof. Joxan JAFFAR

NUS Graduate School for Integrative Sciences and Engineering (NGS)
National University of Singapore (NUS)

March 14, 2013

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 1 / 82

Outline

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 2 / 82

Problem Definition

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 3 / 82

Problem Definition

Symbolic Execution

Uses symbolic values as inputs instead of actual data

Represents the values of program variables as symbolic expressions of
the input symbolic values

Originally introduced for testing (King [1976]; Clarke [1976])

Subsequently used for bug finding (Cadar et al. [2006]) and
verification condition (VC) generation (Beckert et al. [2007]; Jacobs
and Piessens [2008]), among others

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 4 / 82

Problem Definition

Why Symbolic Execution?

Resembles closely human’s reasoning

Allows potentially exact reasoning

Supports high level of automation

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 5 / 82

Problem Definition

Challenges in Symbolic Execution

Symbolic constraints to model real-life programs

Constraint solving: automatically and efficiently

The fundamental problem of path explosion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 6 / 82

Problem Definition

Main Contributions

This thesis applies symbolic execution to two focus areas
1 Path-sensitive analysis of worst-case resource usage
2 Safety verification of concurrent systems

We address the path explosion problem using interpolation methods
dynamic abstraction learning
dynamic reduction (pruning or reusing)

Assumption: The symbolic execution tree is finite. Mechanisms for
making that tree finite (e.g., abstraction, invariant discovery) are
considered as orthogonal issues.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 7 / 82

Background

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 8 / 82

Background

Interpolation for Program Verification (Jaffar et al. [2009])

A and B share the same program point, i.e., `A = `B

A does not subsume B

Generalize the context of A to Ā, aka an interpolant, while preserving
the safety

B is subsumed by Ā

BBA
Ā

pruned

SUBSUMED

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 9 / 82

Background

Example: Interpolation for Program Verification

〈0〉 t = 0;
〈1〉 if (*)
〈2〉 t++;

else
〈3〉 t += 2;
〈4〉 if (*)
〈5〉 t++;

else
〈6〉 t += 2;
〈7〉 if (t > 10)
〈8〉 error();
〈9〉

〈0〉

〈1〉

t = 0;

〈2〉 〈3〉

〈4〉

t++;

(*) (*)

〈5〉 〈6〉

〈7〉

t++;

(*) (*)

〈4〉

t += 2;

〈7〉

t += 2;

assume(t > 10)

〈9〉

assume(t ≤ 10)

false

t ≤ 10

t ≤ 9

t ≤ 8

t ≤ 7

t ≤ 6

true

subsumed

subsumed

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 10 / 82

Background

Interpolation for Program Analysis (Jaffar et al. [2008])

A and B share the same program point, i.e., `A = `B

A does not subsume B
Generalize the context of A to Ā, aka an interpolant, while preserving
the infeasible paths
B is subsumed by Ā
The summarized analysis of A can be safely reused in B

BBA

Ā

re-use

SUBSUMED

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 11 / 82

Background

Example: Interpolation for Program Analysis

find a safe upper-bound for
the final value of t
〈0〉 t = 0;
〈1〉 if (*)
〈2〉 t++;

else
〈3〉 t += 2;
〈4〉 if (*)
〈5〉 t++;

else
〈6〉 t += 2;
〈7〉

〈0〉

〈1〉

t = 0;

〈2〉 〈3〉

〈4〉

t++;

(*) (*)

〈5〉 〈6〉

〈7〉

t++;

(*) (*)

〈4〉

t += 2;

〈7〉

t += 2;

true

subsumed

true

true

true

true

true

tf ≤ tc + 1 tf ≤ tc + 2

tf ≤ tc + 2

tf ≤ tc + 3 tf ≤ tc + 4

tf ≤ tc + 4

tf ≤ tc + 2

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 12 / 82

Background

Interpolation+Witness for Program Analysis (Jaffar et al.
[2008])

The representative path in A is infeasible in B

BBA

Ā

V V VX X X

NOT SUBSUMED

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 13 / 82

Background

Example: Interpolation+Witness for Program Analysis

find a safe upper-bound for
the final value of t
〈0〉 t = 0;
〈1〉 if (x >= 0)
〈2〉 t++;

else
〈3〉 t += 2;
〈4〉 if (x != 0)
〈5〉 t++;

else
〈6〉 t += 2;
〈7〉

〈0〉

〈1〉

t = 0;

〈2〉 〈3〉

〈4〉

t++;

(x ≥ 0) (x < 0)

〈5〉 〈6〉

〈7〉

t++;

(x $= 0)

〈4〉

t += 2;

〈7〉

t += 2;

true ; x==0

tf ≤ tc + 1 tf ≤ tc + 1

tf ≤ tc + 2

tf ≤ tc + 3 tf ≤ tc + 3

tf ≤ tc + 3

(x == 0)

〈5〉

〈7〉

t++;

(x $= 0) (x == 0)

false

tf ≤ tc + 1

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 14 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 15 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

Analysis of Worst-Case Resource Usage

Important for designing real-time and embedded systems

Ranges from cumulative resource (e.g., timing) to non-cumulative
resource (e.g., memory high watermark)

Extremely hard due to the requirement of high precision

Redeeming factors:
Loops/recursions are statically bounded (i.e., termination is
guaranteed)
The users/certifiers are on our side

We restrict the presentation to Worst-Case Execution Time (WCET)
analysis

Results are extensible to non-cumulative resource

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 16 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

Architecture of A Traditional WCET Analyzer

Executable 
Programs 

CFG Builder 

Loop 
Transforma<on 

Intermediate 
Files 

Low-level
Analysis ILP Generator 

LP‐Solver 

Loop bounds 

Infeasible paths 

WCET 

Path Analysis

User informa<on 

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 17 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

Implicit Path Enumeration Technique (IPET)

Introduced by Li and Malik [1995]

Employs Integer Linear Programming (ILP)

Simple, elegant, fast, but path-insensitive

Supports user information

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 18 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

Example: IPET

c1 = 0, c2 = 0, c3 = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c1++; t += 10; }
else {

if (i == 1) {B2: c2++, t += 5; }
else {B3: c3++; t += 1; }

}
i++;
assert(c1 <= 4);

}

maximize(10 * c1 + 5 * c2 + 1 * c3) wrt. c1 + c2 + c3 ≤ 9 ∧ c1 ≤ 4

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 19 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

Manual Annotations

Annotations of loop bounds
Is mandatory to produce a bound
Precision depends on precise loop bounds
Can be automated via some form of loop bound analysis: This is
non-trivial due to complicated loops

Annotations of infeasible paths
Fundamentally hard due to the exponential number of infeasible paths
Automation: usually ad-hoc (e.g., detecting simple conflict patterns)

Annotations of user information (assertions) which is not readily
extractable from the programs

Information which is too hard to automatically extract from the code
Additional information the users know, but not in the code

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 20 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage

Our Method

Executable 
Programs 

CFG Builder 

Loop 
Transforma<on 

Intermediate 
Files 

Low-level
Analysis

Symbolic 
Execu<on 

WCET 

Path Analysis

User informa<on 

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 21 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 22 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Symbolic Execution with Loop Unrolling

Is essential for capturing non-uniform behaviors of loops

1  2  3  4  5  6  7  8 

Co
st
 o
f e

ac
h 
it
er
a-

on
 

Itera-on # 

"A Non‐Rectangular Loop" 

1  2  3  4  5  6  7  8 

Co
st
 o
f e

ac
h 
it
er
a-

on
 

Itera-on # 

"A Rectangular Loop" 

Challenge: how to make it scalable?

The symbolic execution tree is huge
Its depth is at least proportional to the execution of the WCET path
Estimated number of states = 2{average length of a path}

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 23 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Solutions

Iteration abstraction
Path merging as in (Lundqvist and Stenström [1999] and Gustafsson et
al. [2005])
We only perform at the end of each loop body
We use polyhedral domain

Compounded summarization with interpolation for reuse
Summarizations are compounded both horizontally and vertically
Interpolants tell us when we can safely reuse

Witness paths: tell us when we can precisely reuse

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 24 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Iteration Abstraction

Contexts are merged into one at the end of each loop iteration

We use polyhedral domain (convex hull)
Capture linear relationship between variables
More precise compared to state-of-the-art

Benefits:
Invariant constraints can be propagated through a loop
Common constraints in different paths of each iteration are kept
Non-uniform behaviors of loops can still be captured

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 25 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Illustration: Iteration Abstraction

Red arrows denote summarizations

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 26 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Breadth-wise Reuse of Summarization

Green arrows denote reuse

The condition for reuse is determined by interpolation+witness

tf = tc + 5 tf = tc + 5

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 27 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Breadth-wise Reuse of Summarization

With summarization for each iteration
The leaves of the sub-tree need not be terminal
We need to produce continuation contexts

… …
continue

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 28 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Abstract Transformer

Gives an abstract input-ouput relationship for a finite sub-tree

Again, we compute it using polyhedral domain

Example

if (*) x += 1; else x += 2;
Abstract transformer ∆ = x + 1 ≤ x’ ≤ x + 2

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 29 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Depth-wise Reuse of Summarization

Reuse between different iterations

Yes, we can reuse here

Continue our analysis

Reuse of a summarization

Includes an abstract transformer
to produce continuation context

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 30 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Depth-wise Reuse of Summarization

Analysis of a rectangular loop

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 31 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Depth-wise Loop Compression

So far, we have shown the benefits of abstracting and summarizing
each iteration of a loop

How about summarizing the whole loop?
It benefits when dealing with nested loops
It results in depth-wise loop compression

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 32 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Depth-wise Loop Compression

A serialization of summarizations for a single program point
(inner loop head)

In case of rectangular loops: we will mainly reuse 4

In case of non-rectangular loops: 0,1,2,3 will likely be reused

4

cut-off point of the outer loop

3

2

1

0

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 33 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Example: Depth-wise Loop Compression

Consider bubblesort program

We discover the whole triangle by exploring the first iteration of the
outer loop

The number of inner loop’s iterations being explored is linear

This separates us from other loop unrolling techniques

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 34 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Efficient Loop Unrolling

Experiments
Benchmark Size Actual Complexity Symbolic Simulation (SS)

Parameter (SP) WCET (wrt. SP) States Time WCET Exact?
(ms) Manual Auto

n = 25 1648 135 233 1648 Y N

bubblesort n = 50 6423 O(n2) 260 701 6423 Y N
n = 100 25348 510 2438 25348 Y N

expint NA 859 - 519 8247 859 Y Y
n = 8 181 111 446 181 Y Y
n = 16 379 176 927 379 Y Y

fft1 n = 32 791 O(nlogn) 287 2197 791 Y Y
n = 64 1661 495 6818 1661 Y Y

fir NA 760 - 108 387 760 Y Y
n = 25 1120 159 387 1120 Y N

insertsort n = 50 4120 O(n2) 309 1504 4120 Y N
n = 100 15745 609 7542 15745 Y N

j complex NA 133 - 165 491 534 N N
n = 5 2655 63 59 2655 Y Y

ns n = 10 35555 O(n4) 103 116 35555 Y Y
n = 20 522105 183 344 522105 Y Y

nsichneu NA 281 - 334 15542 281 Y N
ud NA 819 - 487 1137 819 Y Y

n = 50 394 95 287 394 Y Y
amortized n = 100 792 O(n) 186 1035 792 Y Y

n = 200 1590 339 4057 1590 Y Y
n = 50 2199 259 797 2199 Y Y

two shapes n = 100 8149 O(n2) 509 3235 8149 Y Y
n = 200 31299 1009 19839 31299 Y Y
n = 25 3904 129 509 3904 Y Y

non deter n = 50 15304 O(n2) 242 1876 15304 Y Y
n = 100 60604 467 9253 60604 Y Y

tcas NA 99 - 6020 15925 99 Y Y

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 35 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 36 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

The Need for Assertions

Path-sensitivity is necessary for precision

Incorporation of user information is crucial too

t = c = c1 = 0;
for (i = 0; i < 100; i++) {

c++;
if (A[i] != 0) {

c1++;
t += 1000;

} else { t += 1; }
}
assert(c1 <= c / 10);

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 37 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

The Need for Assertions

Consider memory high watermark analysis

We cannot automatically reason about the external function parity

c1 = c2 = 0;
m = 0; m = m + 10;
for (i = 0; i < 100; i++) {

if (parity(n)) {
c1++; m = m + 10;

} else { c2++; m = m - 10; }
n++;
assert(|c1 - c2| <= 1);

}

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 38 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

The Need for Local Assertions

Consider bubblesort, input a[] contains element in [min,max]

User information: there are M elements equal to max

Local assertion is easier to derive (counter c is reset at the beginning
of the inner loop)

IPET does not support local assertions

for (i = N-1; i >= 1; i--) {
c = 0;
for (j = 0; j <= i-1; j++)

if (a[j] > a[j+1]) {
c++; t += 100; tp = a[j];
a[j] = a[j+1]; a[j+1] = tp;

} else { t += 1; }
assert(c <= N-M);

}}

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 39 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Loop Unrolling and Assertions Don’t Mix

To tighten the bound, users need to provide only information about c

c = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 40 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Loop Unrolling and Assertions Don’t Mix

Apply loop unrolling in previous section, performing the merge at the
end of each loop iteration

Information about c is lost
The provided assertion will never be fired
Worst-case bound: 90

Try greedy (under-approximation) by keeping the context of c from
the worst-case path

Worst-case bound: 10 + 10 + 10 + 10 + 1 + 1 + 1 + 1 + 1 = 45
This bound is unsound
Counter example:

Replace “if (*)” with “if prime(i)”
The timing: 1 + 5 + 10 + 10 + 1 + 10 + 1 + 10 + 1 = 49

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 41 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Loop Unrolling and Assertions Don’t Mix

Fundamental Issues
“Being compliant with assertions” requires the analysis to be fully
path-sensitive wrt. assertion variables
This interferes with greedy treatment of loop (merge & summarize)

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 42 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Solution: A Two-Phase Algorithm (for each loop)

Phase 1:
Perform loop unrolling with iteration abstraction
Eliminate two kinds of paths:

Infeasible paths (detected from path-sensitivity)
Dominated paths. (1) We track frequency variables which will be used
later in some assertion. (2) For paths which modify the tracked
variables in the same way, we keep the one whose resource usage
dominates the rest

Phase 2:
Disregard all paths violating the assertions
Employ a dynamic programming approach with interpolation Jaffar et
al. [2008]

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 43 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Example: Removal of Infeasible Paths

c = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

First iteration (eliminate the path executing B2):

〈〈0〉, c := c+1 ∧ t := t+10, 〈1〉〉
〈〈0〉, t := t+1, 〈1〉〉

Second iteration (eliminate the path executing B3):

〈〈1〉, c := c+1 ∧ t := t+10, 〈2〉〉
〈〈1〉, t := t+5, 〈2〉〉

Other iterations, i.e., i = 2..8, reuse the analysis of the first iteration:

〈〈i〉, c := c+1 ∧ t := t+10, 〈i+1〉〉
〈〈i〉, t := t+1, 〈i+1〉〉

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 44 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Example: Removal of Dominated Paths

c = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (*) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}

All iterations, i.e., i = 0..8 (eliminate the path executing B3):

〈〈i〉, c := c+1 ∧ t := t+10, 〈i+1〉〉
〈〈i〉, t := t+5, 〈i+1〉〉

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 45 / 82

Path-Sensitive Analysis of Worst-Case Resource Usage Supporting Local Assertions

Experiments

Benchmark LOC Path-Sensitive Path-Insensitive
(Symbolic execution w. loop unrolling) (IPET)
w.o. Assertions w. Assertions w.o. As w. As

Bound T(s) Bound T(s)
sparse array < 100 110404 1.50 10404 3.48 110404 10404
bubblesort100 < 100 515398 5.52 49798 11.45 1019902 1019902
watermark < 100 1010 1.74 20 5.45 * *
conflict100 < 100 1504 3.47 759 9.22 1504 1129
insertsort100 < 100 515794 4.91 30802 7.78 1020804 1020804
crc 128 1404 7.73 1084 8.61 1404 1084
expint 157 15709 4.40 859 4.56 - -
matmult100 163 3080505 4.55 131705 5.54 3080505 131705
fir 276 1129 2.35 793 2.39 - -
fft64 219 7933 5.52 1733 6.04 - -
tcas 400 159 3.84 81 3.9 172 94
statemate 1276 2103 9.65 1103 9.73 2271 1271
nsichneu small 2334 483 9.43 383 9.51 2559 2459

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 46 / 82

Safety Verification of Concurrent Systems

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 47 / 82

Safety Verification of Concurrent Systems

Safety Verification of Concurrent Systems

Extremely hard because of state explosion problem
Exploration of all possible interleavings of concurrent events
Example: The execution of n concurrent events is investigated by
exploring all n! interleavings of these events

Two prominent techniques for state space reduction: Partial Order
Reduction (POR) and Symmetry Reduction

Little (or no) sensitivity wrt. the target safety property
Slicing to remove irrelevant events does not count

Hardly work with symbolic methods

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 48 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 49 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Traditional Partial Order Reduction (POR)

Weaken the concept of a trace by abstracting the total order into a
partial order

Two transitions are independent if their consecutive occurrences in a
trace can be swapped without changing the final state
Two traces are equivalent if one can be transformed into another by
repeatedly swapping adjacent independent transitions
For each class of equivalent traces, only one representative needs to be
checked

Distinguish two cases:
Deadlock verification
Safety verification (in general)

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 50 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Our Contributions

Enable POR to work with symbolic search

Synergize POR with State Interpolation (SI)
Replace the concept of trace equivalence with trace coverage
Weaken POR to Property Dependent POR (PDPOR)
Weaken PDPOR to Trace Interpolation

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 51 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

State Interpolation: State Pruning

s0

si

θ1 θ2

sj
Subsumed?

Can we prune this state?

si and sj share the same program point ℓ

A’A

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 52 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

POR: Branch Pruning

t1 t2

A
B

si+1

si

Can we prune this branch?

s0

θ1

t1 and t2 emanate from the same state si

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 53 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Trace Coverage

Definition (Trace Coverage)

Let ρ1, ρ2 be two traces of a concurrent program. We say ρ1 covers ρ2

wrt. a safety property ψ, denoted as ρ1 wψ ρ2, iff ρ1 |= ψ → ρ2 |= ψ.

To replace the concept of trace equivalence

The safety of one trace implies the safety of the other

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 54 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Property Dependent POR

Definition (Semi-Commutativity Relation)

Given a feasible derivation s0
θ

=⇒ s, for all t1, t2 ∈ T which cannot
dis-schedule each other, we say t1 semi-commutes with t2 after state s
wrt. wψ, denoted by 〈s, t1 ↑ t2, ψ〉, iff for all w1,w2 ∈ T ∗, if θw1t1t2w2

and θw1t2t1w2 both are execution traces of the program, then we have
θw1t1t2w2 wψ θw1t2t1w2.

To replace the concept of transition independence relation

Traces with t1 right before t2 cover traces with t1 right after t2

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 55 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Example: Independence vs. Semi-Commutativity

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : x++ t{2} : y++

t{1} is independent with t{2} wrt. deadlock verification

t{1} is dependent with t{2} wrt. general safety property

t{1} is semi-commutative with t{2} and vice versa wrt. safety
property ψ ≡ x + y ≤ C

t{1} is semi-commutative with t{2} wrt. safety property
ψ ≡ x − y ≤ C , but not the other way around

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 56 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Example: Independence vs. Semi-Commutativity

〈0〉

〈1〉

〈0〉

〈1〉

t{1} t{2}

〈0,0〉

〈0,1〉

t{1}

〈1,0〉

〈1,1〉

t{1}

t{2}

t{2}

〈0,0〉

〈0,1〉

t{1}

〈1,0〉

〈1,1〉

t{1}

t{2}

t{2}

〈1,1〉

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 57 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Property Dependent POR

Definition (New Persistent Set)

A set T ⊆ T of transitions enabled in a state s is persistent in s wrt. a

property ψ iff, for all feasible derivation s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm

including only transitions ti ∈ T and ti 6∈ T , 1 ≤ i ≤ m, each transition in
T semi-commutes with ti after s wrt. wψ.

Traces derived with transitions not in the persistent set first are
covered by traces derived with transitions in the persistent set first

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 58 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Property Dependent POR

Selective search algorithm: at each state, we only consider transitions
that belong to its persistent set

Theorem

The selective search algorithm with our new definition for persistent set is
sound

Given the semi-commutativity relation, to compute new persistent
sets is similar to computing old persistent sets from the independence
relation

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 59 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Trace Interpolation

Definition (Semi-Commutative After A Program Point)

We say t1 semi-commutes with t2 after program point ` wrt. wψ and φ,
denoted as 〈`, φ, t1 ↑ t2, ψ〉, iff for all feasible state s ≡ 〈`, JsK〉 reachable
from the initial state s0, if JsK |= φ then t1 semi-commutes with t2 after
state s wrt. wψ.

Definition (Persistent Set Of A Program Point)

A set T ⊆ T of transitions schedulable at program point ` is persistent at
` under the trace-interpolant Ψ wrt. a property ψ iff, for all feasible
derivation s0=⇒s such that s ≡ 〈`, JsK〉, if JsK |= Ψ then for all feasible

derivations s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only transitions
ti ∈ T and ti 6∈ T , 1 ≤ i ≤ m, each transition in T semi-commutes with ti

after state s wrt. wψ.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 60 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Implementing Trace Interpolation

It is about approximating the semi-commutativity relation
Syntactic conditions (as in traditional POR)
Semantic conditions for some classes of problem and simple properties
General algorithm (opportunistically) when the weakest preconditions
are available (on going)

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 61 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Experiments: Producers and Consumer

N producers increment x; N producers double x;
the consumer consumes value of x; prove x ≤ N ∗ 2N

POR SI POR+SI TI+SI
N States T(s) States T(s) States T(s) States T(s)
2 449 0.03 514 0.17 85 0.03 10 0.01
3 18745 2.73 6562 2.43 455 0.19 14 0.01
4 986418 586.00 76546 37.53 2313 1.07 18 0.01
5 − − − − 11275 5.76 22 0.01
6 − − − − 53261 34.50 26 0.01
7 − − − − 245775 315.42 30 0.01

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 62 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Experiments: Sum of Ids

Comparing with the state-of-the-art

POR = None Kahlon et al. [2009] w. Z3 POR+SI = SI TI+SI
N States T(s) Conflicts Decisions T(s) States T(s) States T(s)
6 2676 0.44 1608 1795 0.08 193 0.05 7 0.01
8 149920 28.28 54512 59267 10.88 1025 0.27 9 0.01
10 − − − − − 5121 1.52 11 0.01
12 − − − − − 24577 8.80 13 0.01
14 − − − − − 114689 67.7 15 0.01

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 63 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Experiments: Dining Philosophers and Bakery

None POR SI POR+SI
Problem States T(s) States T(s) States T(s) States T(s)
din-2(a) 22 0.01 22 0.01 21 0.01 21 0.01
din-3(a) 1773 0.10 646 0.05 153 0.03 125 0.02
din-4(a) − − 155037 19.48 1001 0.17 647 0.09
din-5(a) − − − − 6113 1.01 4313 0.54
din-6(a) − − − − 35713 22.54 24201 4.16
din-7(a) − − − − 202369 215.63 133161 59.69

bak-2 86 0.05 48 0.03 38 0.03 31 0.02
bak-3 1755 3.13 1003 1.85 264 0.42 227 0.35
bak-4 47331 248.31 27582 145.78 1924 5.88 1678 4.95
bak-5 − − − − 14235 73.69 12722 63.60

Method by Kahlon et al. [2009] also performs safety verification on
DP with a simpler property: Our approach is about 3 times faster

To disprove an unsafe property (b), we require only one trace (< 0.1
seconds) while they required a similar amount of time compared to (a)

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 64 / 82

Safety Verification of Concurrent Systems Synergizing State and Trace Interpolation

Experiments: Concurrent Programs from Cordeiro and
Fischer [2011]

Comparing with SMT-based context-bounded model checking

Cordeiro and Fischer [2011] SI TI+SI
Problem LOC C T(s) States T(s) States T(s)
micro 2 247 17 1095 20201 10.88 201 0.04
stack 105 12 225 529 0.26 529 0.26
circular buffer 111 ∞ 477 29 0.03 29 0.03
stateful20 60 10 95 1681 1.13 41 0.01

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 65 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 66 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Symmetry Reduction: Settings and Motivations

Input concurrent system is defined parametrically

The number of processes (n) is known

The state space contains many symmetric subtrees
A subtree might have up to n! symmetric images

For each class of symmetric subtrees, only one representative needs to
be checked

Contributions:
We introduce the notion of weak symmetry
Our symmetry detection and reduction are performed dynamically
We completely exploit weak symmetry

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 67 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Preliminaries

Given an n-process system, let
I = [1 · · · n] denote its indices
Sym I denote the set of all permutations on I
A permutation π acts on a formula F by simultaneously replacing each
occurrence of index i by π(i)

Example

Let n = 2, π = {1 7→ 2, 2 7→ 1}

π(id1 < 3 ∧ id2 > 4 ∧ x = 10) ≡ (id2 < 3 ∧ id1 > 4 ∧ x = 10)

π(id2 = 2 ∧ x [id1] = 5) ≡ (id1 = 2 ∧ x [id2] = 5)

π(id2 = 2 ∧ x [2] = 5) ≡ (id1 = 2 ∧ x [2] = 5)

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 68 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Example: Increment

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : sum++ t{2} : sum++

〈0,0〉

〈1,0〉 〈0,1〉

〈1,1〉#1 〈1,1〉#2

sum = 0

sum = 1 sum = 1

sum = 2 sum = 2

Safety : ψ ≡ sum ≤ 3
t{1} t{2}

t{2} t{1}

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 69 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

State Interpolation (recall)

A and B share the same program point

BBA
Ā

pruned

SUBSUMED

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 70 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Pruning with Weak Symmetry

A (program point `A) and B (program point `B) having π(`A) = `B

i.e., symmetric program points
Generalize A to Ā while preserving safety, then apply π to Ā

π(Ā)

BA
Ā

pruned

SUBSUMED

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 71 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Our Language

Allow the use of local variable id
id is initialized to a unique value in each process
for simplicity, id ranges from 1 . . . n
value of id can not be changed

The behaviors of processes can range from totally identical to
arbitrarily divergent

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 72 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Example: Weak Symmetry

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : sum += id1 t{2} : sum += id2

〈0,0〉

〈1,0〉 〈0,1〉

〈1,1〉#1 〈1,1〉#2

sum = 0

sum = 1 sum = 2

sum = 3 sum = 3

{sum ≤ 3}

{sum ≤ 3 ∧ sum ≤ 3− id2} {sum ≤ 3 ∧ sum ≤ 3− id1}

Safety : ψ ≡ sum ≤ 3

t{1} t{2}

t{2} t{1}

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 73 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Complete Symmetry Reduction

Completeness means that “given two states which are weakly
symmetric, we will not explore them both in our search space”

pre(t, φ) computes the precondition wrt postcondition φ and
transition t

Definition

The precondition operator pre is said to be monotonic wrt. transition t if
for all φ1, φ2 such that φ1 is weaker than φ2, we have pre(t, φ1) is weaker
than pre(t, φ2)

Theorem

Our symmetry reduction is complete wrt. weak symmetry if our
precondition operator is monotonic wrt. every transition

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 74 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Experiments: Dining Philosophers

There are more symmetries than those statically known

Complete Reduction Rotational only State Interpolation only
P Visited Subsumed T(s) V S T(s) V S T(s)
4 230 134 0.09 328 184 0.13 1246 702 0.81
5 662 446 0.28 1509 981 0.71 7517 4893 4.93
6 1778 1304 0.85 7356 5216 4.18 43580 30908 34.53
7 4584 3552 2.55 35079 26335 28.83 − − −
8 11526 9281 7.54 − − − − − −
9 28287 23432 22.6 − − − − − −
10 67920 57504 58.07 − − − − − −
11 159738 137609 226.86 − − − − − −

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 75 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Example: Dining Philosophers

〈0〉

〈1〉

left.get

〈2〉

right.get

〈3〉

eat

〈4〉

right.release

〈5〉

left.release

〈2〉

〈0〉

〈0〉〈3〉

〈0〉

〈3〉

〈0〉

〈0〉〈2〉

〈0〉

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 76 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Experiments: Reader-Writer Protocol

Comparing with the state-of-the-art

Complete Reduction Lazy Reduction (Wahl [2007])
R # W Visited Subsumed T(s) Abstract States T(s)
2 1 35 20 0.01 9 0.01
4 2 226 175 0.19 41 0.10
6 3 779 658 0.93 79 67.80
8 4 1987 1750 3.23 165 81969.00
10 5 4231 3820 9.21 − −

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 77 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Experiments: Sum of Ids

Weak symmetry

Complete Reduction SPIN-NSR
Processes Visited Subsumed T(s) Visited Subsumed T(s)

10 57 45 0.02 6146 4097 0.03
20 212 190 0.04 11534338 9437185 69.70
40 822 780 0.37 − − −
60 1832 1770 1.91 − − −
80 3242 3160 7.62 − − −
100 5052 4950 22.09 − − −

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 78 / 82

Safety Verification of Concurrent Systems Complete Symmetry Reduction

Experiments: Bakery

It is possible to work with infinite domain

Complete Symmetry Reduction State Interpolation
Processes Visited Subsumed T(s) Visited Subsumed T(s)

3 65 31 0.10 265 125 0.43
4 182 105 0.46 1925 1089 5.89
5 505 325 2.26 14236 9067 74.92
6 1423 983 11.10 − − −

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 79 / 82

Conclusion

1 Problem Definition

2 Background

3 Path-Sensitive Analysis of Worst-Case Resource Usage
Efficient Loop Unrolling
Supporting Local Assertions

4 Safety Verification of Concurrent Systems
Synergizing State and Trace Interpolation
Complete Symmetry Reduction

5 Conclusion

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 80 / 82

Conclusion

Conclusion

We proposed a path-sensitive analysis with efficient loop unrolling
Often achieved exact analysis
Reduced to superlinear complexity
Impactful as loop unrolling is performed in a wide range of analyses

We extended our analysis to be compliant with (local) assertions
This enables the development of a system which possesses 3 key
features: accuracy, scalability, and usability.

We synergistically combined state-based and trace-based methods in
safety verification of concurrent systems

We weakened the traditional concept of symmetry and completely
exploited it

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 81 / 82

Conclusion

Future Work

Extend path-sensitivity to low-level analysis
Interpolation method for cache

Use concurrency model and techniques to solve combinatorial
optimization problems

Need to adapt the reduction techniques to analysis
Combine them with other well-known concepts in Constraint
Programming (e.g., branch-and-bound, forward checking)

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 82 / 82

B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software: The KeY Approach. 2007.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Automatically Generating Inputs of Death. In CCS,
2006.

Lori A. Clarke. A System to Generate Test Data and Symbolically Execute Programs. IEEE Trans. Software Eng., 1976.

L. Cordeiro and B. Fischer. Verifying multi-threaded software using smt-based context-bounded model checking. In ICSE, 2011.

E. A. Emerson and R. J. Trefler. From asymmetry to full symmetry: New techniques for symmetry reduction in model checking.
In Conference on Correct Hardware Design and Verification Methods, 1999.

E. A. Emerson, J. W. Havlicek, and R. J. Trefler. Virtual symmetry reduction. In LICS, 2000.

J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow analysis for embedded system C programs. In WORDS, 2005.

B. Jacobs and F. Piessens. The Verifast Program Verifier, 2008.

J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for dynamic programming with ad-hoc constraints. In AAAI, 2008.

J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for CLP traversal. In CP, 2009.

V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order reduction: An optimal symbolic partial order reduction technique.
In CAV, 2009.

J. C. King. Symbolic Execution and Program Testing. Com. ACM, 1976.

Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumeration. In DAC, 1995.

T. Lundqvist and P. Stenström. An integrated path and timing analysis method based on cycle-level symbolic execution. RTS,
1999.

A. P. Sistla and P. Godefroid. Symmetry and reduced symmetry in model checking. ACM TOPLAS, 2004.

T. Wahl. Adaptive symmetry reduction. In CAV, 2007.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 83 / 82

Questions & Answers

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 83 / 82

Example: Symbolic Execution

〈1〉 if (x > y) {
〈2〉 x = x + y;
〈3〉 y = x - y;
〈4〉 x = x - y;
〈5〉 if (x - y > 0) {
〈6〉 error();

}
〈7〉
}

〈8〉

〈〈1〉, assume(x > y), 〈2〉〉
〈〈2〉, x := x + y, 〈3〉〉
〈〈3〉, y := x - y, 〈4〉〉
〈〈4〉, x := x - y, 〈5〉〉
〈〈5〉, assume(x - y > 0), 〈6〉〉
〈〈5〉, assume(x - y ≤ 0), 〈7〉〉
〈〈6〉, void, 〈7〉〉
〈〈7〉, void, 〈8〉〉
〈〈1〉, assume(x ≤ y), 〈8〉〉

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 84 / 82

Example: Symbolic Execution
ℓ: 〈1〉
σ: x=X, y = Y

Π : true

ℓ: 〈2〉
σ: x=X, y = Y

Π : X > Y

ℓ: 〈8〉
σ: x=X, y = Y

Π : X ≤ Y

ℓ: 〈3〉
σ: x=X+Y, y = Y

Π : X > Y

ℓ: 〈4〉
σ: x=X+Y, y = X

Π : X > Y

ℓ: 〈5〉
σ: x=Y, y = X

Π : X > Y

ℓ: 〈6〉
σ: x=Y, y = X

Π : X > Y ∧ Y −X > 0

ℓ: 〈7〉
σ: x=Y, y = X

Π : X > Y ∧ Y −X ≤ 0

ℓ: 〈8〉
σ: x=Y, y = X

Π : X > Y ∧ Y −X ≤ 0

assume(x>y) assume(x≤y)

assume(x-y>0) assume(x-y≤0)

x := x+y

y := x-y

x := x-y

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 85 / 82

Trace Coverage

Definition (Equivalence)

Two traces are (Mazurkiewicz) equivalent iff one trace can be transformed
into another by repeatedly swapping adjacent independent transitions.

Definition (Trace Coverage)

Let ρ1, ρ2 be two traces of a concurrent program. We say ρ1 covers ρ2

wrt. a safety property ψ, denoted as ρ1 wψ ρ2, iff ρ1 |= ψ → ρ2 |= ψ.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 86 / 82

Property Dependent POR

Definition (Independence Relation)

R ⊆ T × T is an independence relation iff for each 〈t1, t2〉 ∈ R the
following properties hold for every state s:

1 if t1 is enabled in s and s
t1→ s ′, then t2 is enabled in s iff t2 is enabled

in s ′ ; and

2 if t1 and t2 are enabled in s, then there is a unique state s ′′ such that

s
t1t2=⇒ s ′′ and s

t2t1=⇒ s ′′.

Definition (Semi-Commutativity Relation)

Given a feasible derivation s0
θ

=⇒ s, for all t1, t2 ∈ T which cannot
dis-schedule each other, we say t1 semi-commutes with t2 after state s
wrt. wψ, denoted by 〈s, t1 ↑ t2, ψ〉, iff for all w1,w2 ∈ T ∗, if θw1t1t2w2

and θw1t2t1w2 both are execution traces of the program, then we have
θw1t1t2w2 wψ θw1t2t1w2.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 87 / 82

Property Dependent POR

Definition (Old Persistent Set)

A set T ⊆ T of transitions enabled in a state s is persistent in s iff, for all

feasible derivations s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only
transitions ti ∈ T and ti 6∈ T , 1 ≤ i ≤ m, ti is independent with all the
transitions in T .

Definition (New Persistent Set)

A set T ⊆ T of transitions enabled in a state s is persistent in s wrt. a

property ψ iff, for all feasible derivation s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm

including only transitions ti ∈ T and ti 6∈ T , 1 ≤ i ≤ m, each transition in
T semi-commutes with ti after s wrt. wψ.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 88 / 82

Traditional Symmetry Reductions

Definition (Strong Symmetry)

For π ∈ Sym I, and a safety property ψ, for s, s ′ ∈ State, we say that s is

strongly π-similar to s ′ wrt. ψ, denoted by s
π,ψ≈ s ′ if ψ is symmetric wrt.

π and the following conditions hold:
• π(s) = s ′

• for each transition t such that s
t−→ d we have s ′

π(t)−→ d ′ and d
π,ψ≈ d ′

• for each transition t ′ such that s ′ t′−→ d ′ we have s
π−1(t′)−→ d and d

π,ψ≈ d ′.

Rely on the fact that component processes are identical

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 89 / 82

State-of-the-art

Traditional symmetry reduction methods exploit perfect symmetry,
relying on the fact that all component processes are identical

Emerson and Trefler [1999] considered near and rough symmetry,
which later generalized to virtual symmetry (Emerson et al. [2000])

No implementation is provided

Approaches by Sistla and Godefroid [2004] and Wahl [2007] are
closest to us, in allowing behaviors of processes to range from totally
identical to arbitrarily divergent

All of them attempt to capture strong symmetry

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 90 / 82

Weak Symmetry

Definition (Weak Symmetry)

For π ∈ Sym I, and a safety property ψ, for s, s ′ ∈ State, we say that s is

weakly π-similar to s ′ wrt. ψ, denoted by s
π,ψ∼ s ′ if ψ is symmetric wrt. π

and the following conditions hold:
• π(pc(s)) = pc(s ′)
• s |= ψ iff s ′ |= π(ψ)

• for each transition t such that s
t−→ d we have s ′

π(t)−→ d ′ and d
π,ψ∼ d ′

• for each transition t ′ such that s ′ t′−→ d ′ we have s
π−1(t′)−→ d and d

π,ψ∼ d ′.

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 91 / 82

Complete Symmetry Reduction

if (id == 2) { x[2] = 5; }

Problem of aliasing
Our method is still sound
It might affect the monotonicity of pre, hence the completeness
reduction

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 92 / 82

Complete Symmetry Reduction

Could be counter-productive if the system has little symmetry

Optimization:
Quick test to avoid enumerate all the π. E.g., easy to see that there is
no π such that x = 2 |= π(x > 3)
Let the users restrict the kind of symmetries to look for

Duc-Hiep (NGS-NUS) Interpolation Methods for Symbolic Execution March 14, 2013 93 / 82

	Outline
	Problem Definition
	Background
	Path-Sensitive Analysis of Worst-Case Resource Usage
	Efficient Loop Unrolling
	Supporting Local Assertions

	Safety Verification of Concurrent Systems
	Synergizing State and Trace Interpolation
	Complete Symmetry Reduction

	Conclusion
	Appendix
	References

