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SUMMARY

Symbolic execution is a method for program reasoning that uses symbolic values

as inputs instead of actual data, and it represents the values of program variables

as symbolic expressions of the input symbolic values. Symbolic execution was first

developed for program testing, but it has been subsequently used for program analysis

and verification condition generation, among others.

This thesis applies symbolic execution to two important and extremely hard

application areas, namely program path analysis and safety verification of concurrent

programs. The foremost challenge for symbolic execution is the exponential number

of symbolic paths. This challenge is further aggravated due to the existence of loops

(in program path analysis) and interleavings (in safety verification of concurrent

programs). We address the challenge by building custom interpolation methods, of

which the contributions can be summarized as follows:

• In program path analysis, our interpolation method allows us to summarize

loop iterations and combine these summarizations in such a way that the

cost of loop unrolling can just be superlinear. Informally, this means that the

size of our symbolic execution tree is linear, even for nested loop programs of

polynomial complexity. This is indeed a breakthrough in loop unrolling. We

next propose a framework for program path analysis, which accommodates

both path-sensitivity and user assertions. This has not been achieved before.

The main challenge is that, a greedy treatment for loop in symbolic execution,

while being fully compliant with assertions, can produce unsound results. We

address this challenge by presenting a novel two-phase algorithm, where in

each phase, we separately deal with infeasible paths and paths blocked by

assertions.

• In safety verification of concurrent programs, simple state interpolation (e.g.,

in SMT or CEGAR) is no longer applicable. This is due to the astronomically

vii



large state space resulted from process interleavings. In this domain, however,

the most established techniques for state space reduction are partial order

reduction (POR) and symmetry reduction. We contribute by weakening these

traditional concepts, using the concept of interpolation, so that reduction now

can be property dependent. Specifically, we first generalize traditional POR

to property driven partial order reduction (PDPOR), by replacing the concept

of trace equivalence with the concept of trace coverage. We then introduce a

framework which synergistically combines the power of both state interpolation

and PDPOR. Consequently, we achieve significantly better reduction than the

state-of-the-art. We also introduce the notion of weak symmetry which allows

for more symmetry than the notions used in the literature. Weak symmetry

is defined relatively to the target safety property. The key idea is to perform

symmetric transformations of state interpolants, on demand, and use them for

pruning. Our method, when employed with an interpolation algorithm which

is monotonic, can exploit weak symmetry completely. As a result, our work

also breaks new ground in the realm of symmetry reduction.
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1

Chapter 1

Introduction

There are also two kinds of truths:

truths of reasoning and truths of

fact. Truths of reasoning are

necessary and their opposite is

impossible; those of fact are

contingent and their opposite is

possible.

Gottfried Leibniz

“Software is hard”, wrote Donald Knuth, author of the programming field’s most

respected textbooks [Knuth, 1997]. But why?

Indeed, this contradicts expectations, for building software requires neither large

factories nor scarce resource. There have been many attempted explanations for

this (e.g., [Brooks Jr., 1995]), however, fundamentally it is because: (1) software is

designed, not built like a house; and (2) programming is a craft, not a science.

Given that “crafting software” is a human activity, errors occur. The situation

is aggravated by the fact that large software system often has many levels of abstrac-

tion and no single programmer can possibly know all the details about the system.

Consequently, it is extremely hard to control the correctness and performance of

the overall software system. It has been now commonly accepted that software er-
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rors are often too difficult to even detect, let alone isolate, identify, and correct.

The most diligent and faithful applications of random testing can only mitigate this

problem to a certain level. The core problem remains, as expressed by Dijkstra:

“Program testing can be used to show the presence of bugs, but never to show their

absence!” [Dijkstra, 1972].

Nowadays, every major software system that is released or sold, is almost guar-

anteed to contain bugs. On the other hand, having bugs in software is costly [NIST,

2002], and software failures have caused loss of lives in safety critical systems [Garfinkel,

2005]. As software has now become ubiquitous, the quest for reliable software has

become increasingly important. Since the complexity of software system continues

to escalate, so does the need for a rigorous methodology to reason about software

system.

Program reasoning approaches use the means of mathematical and formal proof

in order to discover and guarantee properties of programs. Reasoning is concerned

with analyzing a program down to the smallest element, and then synthesizing

an understanding of the entire program. As opposed to testing, reasoning can

trace every path through a system, and consider every possible combination of

circumstances, and be certain that nothing has been left out. This is possible

because the method relies on mathematical proofs to assure the completeness and

correctness of every step. What is actually achieved by reasoning is a mathematical

proof that the program being studied satisfies its specification. If the specification

is complete and correct, then the program is guaranteed to perform correctly.

1.1 Traditional Program Reasoning Techniques

Proving and discovering properties of programs have been well investigated. Here we

mention program verification, model checking, and program analysis using abstract

interpretation.

The seminal work of Floyd and Hoare [Floyd, 1967; Hoare, 1969] has pioneered



Chapter 1. Introduction 3

the area of program reasoning. In these early work, a calculus for proving program

partial correctness was presented. This approach had the advantage of being com-

positional, in an assume-guarantee fashion. The calculus has later been extended

to support total correctness reasoning, i.e., termination is also considered. Though

Hoare calculus has been serving as the basis for propagation-based reasoning algo-

rithms, which would operate either in a forward manner (strongest postcondition

propagation), or in a backward manner (weakest precondition propagation), its lim-

itation lies in the fact that it requires user-provided assertions and invariants, which

in turn makes automation difficult to achieve.

Model checking [Clarke et al., 1999] has experienced tremendous success with

hardware verification, and verification of finite state systems, in recent years. The

most important advantage of model checking is that it can be made completely

automatic. Typically, the user only need to provide a high level representation

of the model and the specification to be checked. The model checking algorithm

will either terminate with the answer true, indicating that the model satisfies the

specification, or give a counter-example execution in which the specification is not

satisfied. The counter-examples are particularly important in diagnosing (and then

fixing) subtle errors in complex transition systems. Model checking algorithm is

also fast in general and can check partial specifications. However, when it comes

to reasoning about software systems, which concerns (at least theoretically) infinite

state systems, the restriction to a finite state space becomes a major disadvantage.

In such case, abstraction techniques must be employed to produce a finite state

approximation of the system. This approximation might result in the introduction

and detection of spurious errors, i.e., false positives. To deal with this, recent

techniques equipped with mechanisms for automatic abstraction refinement on-the-

fly, usually referred to as the CEGAR family [Clarke et al., 2000; Ball et al., 2001],

have been developed to to help distinguish between spurious and real errors.

Another major program reasoning approach is the abstract interpretation frame-
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work [Cousot and Cousot, 1977]. This framework is frequently used inside compilers,

to analyze programs in order to decide whether certain optimizations or transforma-

tions are applicable. Abstract interpretation simulates the execution of the program

using an abstract domain that is Galois connected with the concrete semantic do-

main. In this process, one has to come up with a fixed abstract domain of finite

lattice structure so that a set of concrete states of the program can now be ap-

proximated by an abstract state. This then results in a finite number of classes of

program states. State space search is then performed on the finite classes. Abstract

interpretation can be engineered to obtain efficient state-space traversal. Since the

abstract domain is designed statically, however, the obtained level of accuracy could

be arbitrarily low.

1.2 Program Reasoning using Symbolic Execution

We propose to develop a methodology in program reasoning founded on symbolic

execution [King, 1976; Clarke, 1976]. Symbolic execution is a process which depicts

different execution states of a program wherein each basic execution step can be

described by a formula capturing the functional behavior of each basic operation,

as opposed to a direct execution of the program (with fixed inputs). This process

is intuitive because it resembles closely the human reasoning behind each execution

step in question. The main advantage of symbolic execution is that it enables us to

potentially obtain fully accurate reasoning because the propagation process is done

in the exact symbolic domain.

Symbolic execution uses symbolic values as inputs instead of actual data, and

it represents the values of program variables as symbolic expressions of the input

symbolic values. A symbolic execution tree depicts all executed paths during the

symbolic execution. A path condition is maintained for each path and it is a for-

mula over the symbolic inputs built by accumulating constraints which those inputs

must satisfy in order for execution to follow that path. A path is infeasible if its
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path condition is unsatisfiable. Otherwise, the path is feasible. Symbolic execution

was first developed for program testing [King, 1976], but it has been subsequently

used for bug finding [Cadar et al., 2006] and verification condition (VC) generation

[Beckert et al., 2007; Jacobs and Piessens, 2008], among others [Cadar et al., 2011;

Saswat, 2012].

Symbolic execution reasons about a program path-by-path. This may be su-

perior to reasoning about a program, like dynamic testing does, input-by-input.

However, to be practical, we first have to overcome the most fundamental chal-

lenge for symbolic execution, namely the exponential number of symbolic paths. The

key concept to counter the path explosion problem is interpolation [Craig, 1955;

McMillan, 2003]. We now briefly mention current state-of-the-arts in this direction.

Program Verification

The seminal work [Jaffar et al., 2009] presented the method of Abstraction Learning

(AL) for loop-free program fragments. This was contrasted as a dual to the current

standard method of CounterExample-Guided Abstraction Refinement (cegar) [Clarke

et al., 2000; Ball et al., 2001]. CEGAR starts with an abstract model of the program

and if, in the ensuing abstract interpretation, an error is found, then a check of the

error path is performed to determine if the path is indeed a real path (because ab-

straction admits “spurious” paths in general). If so, we have found an error; if not,

then an examination of this path will be done in order to refine the abstraction, and

then the whole process can be redone using the new abstraction. In AL, however,

the technique starts with the concrete model of the program. Then, the model is

checked for the desired property (verification phase) via symbolic execution. If a

counterexample is found, then it must be a real error and hence, the program is

unsafe. Otherwise, the program is safe.

The key idea in AL is to learn: it does this by eliminating from the concrete model

those facts which are irrelevant or too-specific for proving the unreachability of the
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error nodes. This learning phase consists of computing interpolants in the same spirit

of no-good learning in SAT solvers. Informally, an interpolant is a generalization of

a set of states for splitting between “good” and “bad” states.

Jaffar et al. [Jaffar et al., 2011] then further enhance symbolic execution for

handling unbounded loops but yet without losing the intrinsic benefits of symbolic

execution. The method is based on three design principles: (1) abstract loops

in order for symbolic execution to attempt to terminate, (2) preserve as much as

possible the inherent benefits of symbolic execution (mainly, earlier detection of

infeasible paths) by propagating the strongest loop invariants, whenever possible,

and (3) refine progressively imprecise abstractions in order to avoid reporting false

alarms.

Here we emphasize that the use of symbolic execution with interpolants for

verification is thus similar to CEGAR [Henzinger et al., 2004; McMillan, 2006], but

symbolic execution has some benefits (see [McMillan, 2010]):

1. It does not explore infeasible paths, thus avoids the expensive refinement in

CEGAR.

2. It avoids expensive predicate image computations of, for instance, the Carte-

sian [Ball et al., 2004; Beyer et al., 2007] and Boolean [Beyer et al., 2009]

abstract domains.

3. It can recover from too-specific abstractions in opposition to monotonic refine-

ment schemes often used in CEGAR.

Program Analysis

A pioneering work using interpolation for analysis is [Jaffar et al., 2008] on the

specific problem of discovering the longest path in a loop-free problem, an instance

of the NP-complete problem of Resource Constrained Shortest Path (RCSP). The

novelty here was the use of interpolants [Jaffar et al., 2009] and witnesses. When

a path is analyzed, we extract an interpolant from the formula associated with the



Chapter 1. Introduction 7

symbolic states of its nodes. This is a more general formula stored at each node that

preserves the relevant information in the path. When a subtree of paths is analyzed,

we compute a witness, a formula which describes the (sub-)analysis of the tree. If one

of the nodes is encountered in another path such that its current formula entails the

previously computed interpolant and witness, we can avoid exploring the paths from

that node. We call this step the subsumption test. Whenever the subsumption test

fails (i.e., the entailment does not hold), symbolic execution will naturally perform

node splitting and duplicate all successors of the node until the next merge point.

Alternatively, if the test passes, a node merging is performed. The key insight is

that the subsumed node shares the analysis results of the subsuming node, thus

giving rise to the all-important computational optimization of re-use.

1.3 Thesis Contributions and Organization

This thesis applies symbolic execution to two important and extremely hard appli-

cation areas of program reasoning, namely program path analysis and safety ver-

ification of concurrent programs. These two problem domains share a common

characteristic that they require reachability analysis on the symbolic execution tree.

The thesis makes several contributions in the two areas. First, it gives a sym-

bolic simulation framework which not only breaks new ground among loop unrolling

techniques (Chapter 3, previously presented in [Chu and Jaffar, 2011]) but also is

the first unrolling technique incorporating the use of user assertions (Chapter 4,

previously presented in [Chu and Jaffar, 2012b]). Second, it extends the traditional

concepts for state space reduction, namely partial order reduction and symmetry

reduction, with the concept of interpolation so that pruning now can be property

dependent (Chapter 5 and Chapter 6, previously presented in [Chu and Jaffar, ] and

[Chu and Jaffar, 2012a] respectively). Background material that our work builds

upon is covered in Chapter 2.
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Program Path Analysis

Symbolic execution with interpolation has been shown to be effective for the loop-

free program fragments [Jaffar et al., 2008]. However, the fundamental challenge of

symbolic execution is much further aggravated due to the existence of loops. Let us

quantify this matter with a concrete example.

for (i = 0; i < 100; i++) {
if (rand() > 0.5)

j++;
else

k++;
}

Figure 1.1: A Simple Loop with Exponential Number of Paths

Consider Fig. 1.1. In each of the 100 iterations, depending on the return value of the

random function rand(), either j or k will be incremented. There are two possible

outcomes during each loop iteration. Thus, the number of feasible program paths

is 2100. The first key observation is that, the number of feasible program paths is

exponentially large. Second, because we are in fact performing symbolic execution,

“the analysis time is always at least proportional to the actual execution of the input

program. It leads to very long analysis time since symbolic execution is typically

orders of magnitudes slower than native execution”[Wilhelm et al., 2008].

In short, there are two fundamental issues caused by loops, which prevent sym-

bolic execution from getting exact analysis: one involves the breadth; the other

involves the depth of the symbolic execution tree.

In Chapter 3, we present our symbolic execution technique, applied to the prob-

lem of Worst Case Execution Time (WCET) path analysis. We address the first issue,

namely breadth-wise, not only by using the concept of interpolation [Jaffar et al.,

2008], but also by applying path merging at the end of each loop iteration. The

second issue, namely depth-wise, is resolved by vertically combined summarization.
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A notable achievement is that the complexity of our analysis is often observed as su-

perlinear, even for those loops which are classified as complicated loops. Informally,

this means that the size of our symbolic execution tree for a nested loop program of

polynomial complexity can just be linear. Therefore, symbolic execution can in fact

be asymptotically shorter than a concrete execution. This is important because the

cost of symbolic simulation is, clearly, far higher than concrete simulation.

Our work has broken new ground in loop unrolling techniques for program anal-

ysis. In term of accuracy, we achieve exact bounds for most of the benchmarks com-

monly used for evaluating WCET analysis. Importantly, our method guarantees exact

bound in case of loop free programs, single-path programs (might contain loops),

and programs where all path merges performed are not “destructive” [Thakur and

Govindarajan, 2008a]. In term of scalability, our work overcomes the fundamental

shortcomings of symbolic execution in regard of loop handling and works well with

programs of small and medium size (up to 2K lines of code).

In Chapter 4, we propose a path analysis framework for general resource usage.

Our framework supports not only analysis of cumulative resource but also analysis

of non-cumulative resource such as memory high watermark. Most importantly, our

framework is the first which accommodates both path-sensitivity and user assertions

at the same time. We achieve this using a novel two-phase algorithm. In the first

phase, we make use of our unrolling technique presented in Chapter 3 so that context

propagation can be done precisely and efficiently. Our second phase tackles the

combinatorial explosion, due to the requirement of being fully path-sensitive wrt.

the provided user assertions, by employing an adaptation of dynamic programming

with interpolants [Jaffar et al., 2008]. The novelty lies in the significant simplification

of program paths achieved at the end of phase 1, which makes [Jaffar et al., 2008]

now become applicable.
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Safety Verification of Concurrent Programs

Verification of concurrent programs is extremely hard due to the state space explo-

sion caused by interleavings of transitions from different processes.

Symbolic execution with interpolation, also referred to as state interpolation, (SI)

has been shown to be effective for verification of sequential programs. In SI [Jaffar et

al., 2009; Jaffar et al., 2011], a node at program point ` in the reachability tree can be

pruned, if its context is subsumed by the interpolant computed earlier for the same

program point `. Therefore, even in the best case scenario, the number of states

explored by a SI method must still be at least the number of all distinct program

points. Since the number of global program points is the product of the numbers

of program points in each process, in the setting of concurrent programs, exploring

each distinct global program point once might already be considered prohibitive. In

short, symbolic execution with interpolation (SI) alone is not efficient enough for

verification of concurrent programs.

In the literature, two established concepts to reduce interleavings in verifica-

tion of concurrent programs are partial order reduction (POR) and symmetry reduc-

tion. POR exploits the equivalence of interleavings of ‘independent’ transitions, i.e.,

two transitions are independent if their consecutive occurrences in a trace can be

swapped without changing the final state. In other words, POR-related methods

prune away redundant process interleavings in a sense that, for each Mazurkiewicz

[Mazurkiewicz, 1986] trace equivalence class of interleavings, if a representative has

been checked, the remaining ones are regarded as redundant. Symmetry reduction,

on the other hand, exploits the similarity between processes in the concurrent sys-

tem. In the global state space, this similarity gives rise to classes of states, each

contains states which are transformable into one another via some permutation. The

intuition for reduction is that we should check only one representative state for each

of such class. Note, however, that both traditional POR and symmetry reduction

are of little (if at all) sensitive wrt. the target safety property.
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In Chapter 5, we first contribute by further weakening the concept of Partial

Order Reduction to Property Driven Partial Order Reduction (PDPOR) — which is

now property dependent — in order to adapt it for a symbolic execution framework

with abstraction. This is made possible by introducing the concept of trace coverage,

a generalization of the traditional concept of Mazurkiewicz trace equivalence. The

main contribution of this Chapter, however, is a framework that synergistically

combines state interpolation and PDPOR so that the sum is more than its parts.

Finally, in Chapter 6, we enhance the concept of symmetry reduction. Tradi-

tional symmetry reduction techniques rely on an idealistic assumption that processes

are indistinguishable. Because this assumption excludes many realistic systems,

there is a recent trend to consider systems of non-identical processes, but where

the processes are sufficiently similar that the original gains of symmetry reduction

can still be obtained, even though this necessitates an intricate step of detecting

symmetry in the state exploration.

Here we present a general method for its application, restricted to verification of

safety properties, but without any prior knowledge about global symmetry. We start

by using a notion of weak symmetry which allows for more reduction than in previous

notions of symmetry. This notion is relative to the target safety property. The key

idea is to perform symmetric transformations on state interpolants, on demand, and

use them for pruning. Our method naturally favors “quite symmetric” systems:

more similarity among the processes leads to greater pruning of the tree. The main

result is that the method is complete wrt. weak symmetry: it only considers states

which are not weakly symmetric to an already encountered state.
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Chapter 2

Symbolic Execution with

Interpolation

If history repeats itself, and the

unexpected always happens, how

incapable must Man be of learning

from experience.

George Bernard Shaw

We restrict our presentation to a simple imperative programming language, where

all basic operations are either void operations, assignments, or assume operations.

The set of all program variables is denoted by Vars. A void operation takes the usual

semantic: it only changes the program location. An assignment x := e corresponds

to assign the evaluation of the expression e to the variable x. In the assume opera-

tion, assume(c), if the conditional expression c evaluates to true, then the program

continues, otherwise it halts. The set of operations is denoted by Ops.

We model a program by a transition system. A transition system P is a triple

〈L, l0,−→〉 where L is the set of program points and l0 ∈ L is the unique initial

program point. −→⊆ L × L × Ops is the transition relation that relates a state

to its (possible) successors by executing the operations. This transition relation



Chapter 2. Symbolic Execution with Interpolation 13

models the operations that are executed when control flows from one program point

to another. We shall use `
op−−→ `′ to denote a transition relation from ` ∈ L to

`′ ∈ L executing the operation op ∈ Ops.

A transition system naturally constitutes a directed graph, where each node

represents a program point and edges are defined by the relation −→. This graph

is similar to (but not the same as) the control flow graph of a program.

〈1〉 if (x > y) {
〈2〉 x = x + y;
〈3〉 y = x - y;
〈4〉 x = x - y;
〈5〉 if (x - y > 0) {
〈6〉 error();

}
〈7〉
}

〈8〉
(a) A Verification Problem

〈〈1〉, assume(x > y), 〈2〉〉
〈〈2〉, x := x + y, 〈3〉〉
〈〈3〉, y := x - y, 〈4〉〉
〈〈4〉, x := x - y, 〈5〉〉
〈〈5〉, assume(x - y > 0), 〈6〉〉
〈〈5〉, assume(x - y ≤ 0), 〈7〉〉
〈〈6〉, void, 〈7〉〉
〈〈7〉, void, 〈8〉〉
〈〈1〉, assume(x ≤ y), 〈8〉〉

(b) The Transition System

〈1〉

〈8〉

〈3〉〈2〉 〈4〉 〈5〉 〈6〉

〈7〉

void

assume(x>y)

assume(x≤y)

x := x+y y := x-y x := x-y assume(x-y>0)

assume(x-y≤0)

void

(c) Graph Representation

Figure 2.1: Transition System and Its Graph Representation

EXAMPLE 2.1 (Transition System): Consider the verification problem in Fig. 2.1(a)

where we want to prove that program point 〈6〉 is unreachable. This program

fragment is taken from [Saswat, 2012]. The translated transition system is as in

Fig. 2.1(b) and the corresponding directed graph is in Fig. 2.1(c). Note that the

displays of void operations are unnecessary and we will omit them from now on.
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2.1 Symbolic Execution

One advantage of representing a program using transition systems is that the pro-

gram can be executed symbolically in a simple manner. Moreover, as this represen-

tation is general enough, retargeting (e.g., to different types of applications) is just

the matter of compilation to the designated transition systems.

Definition 1 (Symbolic State). A symbolic state s is a triple 〈`, σ,Π〉, where ` ∈ L
corresponds to the concrete current program point, the symbolic store σ is a func-

tion from program variables to terms over input symbolic variables, and the path

condition Π is a first-order logic formula over the symbolic inputs which accumulates

constraints the inputs must satisfy in order for an execution to follow the correspond-

ing path.

Let s0 ≡ 〈`0, σ0,Π0〉 denote the unique initial symbolic state. At s0 each pro-

gram variable is initialized to a fresh input symbolic variable. For every state

s ≡ 〈`, σ,Π〉, the evaluation JeKσ of an arithmetic expression e in a store σ is defined

as usual: JvKσ = σ(v), JnKσ = n, Je+ e′Kσ = JeKσ + Je′Kσ, Je− e′Kσ = JeKσ − Je′Kσ,

etc. The evaluation of conditional expression JcKσ can be defined analogously.

The set of first-order logic formulas and symbolic states are denoted by FO and

SymStates, respectively.

Definition 2 (Transition Step). Given a transition system 〈L, `0,−→〉 and a state

s ≡ 〈`, σ,Π〉 ∈ SymStates, the symbolic execution of transition t : `
op−−→ `′ returns

another symbolic state s′ defined as:

s′ ,


〈`′, σ,Π〉 if op ≡ void

〈`′, σ,Π ∧ JcKσ〉 if op ≡ assume(c)

〈`′, σ[x 7→ JeKσ],Π〉 if op ≡ x := e

(2.1)
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Abusing notation, the execution step from s to s′, taking the transition t : `
op−−→ `′,

is denoted as s t−−→ s′. Given a symbolic state s ≡ 〈`, σ,Π〉 we also define JsK to be

the formula (
∧
v ∈ Vars v = JvKσ)∧Π where Vars is the set of program variables.

For convenience, when there is no ambiguity, we just refer to the symbolic state s

using the pair 〈`, JsK〉, where JsK is the constraint component of the symbolic state

s. When we are not interested in the program point components of states, we just

write Js′K ≡ exec(JsK, op) to denote the execution step from s to s′.

A symbolic path θ ≡ s0 → s1 → · · · → sm is a sequence of symbolic states such

that ∀i • 1 ≤ i ≤ m the state si is a successor of si−1. A symbolic state s′ ≡ 〈`′, ·, ·〉
is a successor of another s ≡ 〈`, ·, ·〉 if there exists a transition relation `

op−−→ `′.

A path θ ≡ s0 → s1 → · · · → sm is feasible if sm ≡ 〈`m, σ,Π〉 such that JΠKσ

is satisfiable. Otherwise, if JΠKσ is unsatisfiable the path is called infeasible and

sm is called an infeasible state. Note that in traditional symbolic execution, we do

not expand from infeasible states. Here we query a theorem prover for satisfiability

checking on the path condition. We assume the theorem prover is sound but not

complete. That is, the theorem prover must say a formula is unsatisfiable only if it

is indeed so.

If `m ∈ L and there is no transition from `m to another program point, then `m

is called the ending point of the program. Under that circumstance, if sm is feasible

then sm is called terminal state. A state s ≡ 〈`, ·, ·〉 is called subsumed if there exists

another state s′ ≡ 〈`, ·, ·〉 such that JsK |= Js′K. Note that s and s′ share the same

program point `. If there exists a feasible path θ ≡ s0 → s1 → · · · → sm then, for

(0 ≤ i < j ≤ m), we say sj is reachable from si in (j-i) steps. We say s′′ is reachable

from s if it is reachable from s in some number of steps.

A symbolic execution tree characterizes the execution paths followed during the

symbolic execution of a transition system by triggering Eq. (2.1). The nodes/vertices

represent symbolic states and the edges represent transitions between states.

EXAMPLE 2.2 (Symbolic Execution): Refer back to the example in Fig. 2.1. Assume
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ℓ: 〈1〉
σ: x=X, y = Y

Π : true

ℓ: 〈2〉
σ: x=X, y = Y

Π : X > Y

ℓ: 〈8〉
σ: x=X, y = Y

Π : X ≤ Y

ℓ: 〈3〉
σ: x=X+Y, y = Y

Π : X > Y

ℓ: 〈4〉
σ: x=X+Y, y = X

Π : X > Y

ℓ: 〈5〉
σ: x=Y, y = X

Π : X > Y

ℓ: 〈6〉
σ: x=Y, y = X

Π : X > Y ∧ Y −X > 0

ℓ: 〈7〉
σ: x=Y, y = X

Π : X > Y ∧ Y −X ≤ 0

ℓ: 〈8〉
σ: x=Y, y = X

Π : X > Y ∧ Y −X ≤ 0

assume(x>y) assume(x≤y)

assume(x-y>0) assume(x-y≤0)

x := x+y

y := x-y

x := x-y

Figure 2.2: Performing Symbolic Execution

that the initial value of variable x is X while the initial value of y is Y . Fig. 2.2

demonstrates the symbolic execution for this program. At the program point ` ≡ 〈6〉,
the path condition Π ≡ X > Y ∧ Y − X > 0 is unsatisfiable. In other words, the

corresponding state is infeasible and requires no further expansion.
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2.2 Interpolation

The main approach to counter the path explosion problem in symbolic execution is

interpolation [Craig, 1955]. The concept of interpolation has been widely used for

verification; recently it has also been adopted in the area of program analysis.

Program Verification via Symbolic Execution

We follow the approach of [Jaffar et al., 2009], where interpolation is in the form of

state interpolation (SI). Here our symbolic execution is depicted as a tree rooted at

the initial state s0 and for each state si therein, the descendants are just the states

obtainable by extending si with a feasible transition.

Definition 3 (Safety of A State). Given a program and a safety property ψ, we say

a state s ∈ SymStates is safe wrt. ψ iff JsK |= ψ.

Definition 4 (Safety of A Program). We say a given program is safe wrt. a safety

property ψ if ∀s ∈ SymStates • s is reachable from the initial state s0 implies that s

is safe wrt. ψ.

Consider one particular feasible path: s0
t1→ s1

t2→ s2 · · · sm. A program point

`i of si characterizes a point in the reachability tree in terms of all the remaining

possible transitions. Now, this particular path is safe wrt. a safety property ψ if

for all k, 0 ≤ k ≤ m, we have JskK |= ψ. A (state) interpolant at program point `i,

0 ≤ i ≤ m is simply a set of states Si containing si such that for any state s′i ∈ Si,
s′i

ti+1−→ s′i+1

ti+2−→ s′i+2 · · · s′m, it is also the case that for all k, i ≤ k ≤ m, we have

Js′kK |= ψ. This interpolant was constructed at program point `i due to the one

path. Consider now all paths from s0 and with prefix t1, · · · , ti−1. Compute each

of their interpolants. Finally, the interpolant for the subtree (at si) of paths just

considered is simply the intersection of all the individual interpolants. This notion

of interpolant for a subtree provides a weaker notion of subsumption. We can now
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prune a subtree in case its root is within the interpolant computed for a previously

encountered subtree of the same program point.

Definition 5 (Safe Root). Given a transition system and an initial state s0, let s

be a feasible state reachable from s0. We say that s is a safe root wrt. a safety

property ψ, denoted
a
ψ(s), iff all states s′ reachable from s are safe wrt. ψ.

Definition 6 (State Coverage). Given a transition system and an initial state s0

and si and sj are two symbolic states such that (1) si and sj are reachable from s0

and (2) si and sj share the same program point `, we say that si covers sj wrt. a

safety property ψ, denoted by si �ψ sj, iff
a
ψ(si) implies

a
ψ(sj).

The impact of state coverage relation is that if (1) si and sj share the same

program point `, and (2) si covers sj , and (3) the subtree rooted at si has been

traversed and proved to be safe, then the traversal of subtree rooted at sj can

be avoided. In other words, we gain performance by pruning the subtree at sj .

Obviously, if si naturally subsumes sj , i.e., JsjK |= JsiK, then state coverage is

trivially achieved. In practice, however, this scenario does not happen often enough.

Let us now introduce the concept of Craig interpolant [Craig, 1955].

Definition 7 (Interpolant). Given two first-order logic formulas F and G such that

F |= G, then there exists an interpolant H denoted as Intp(F,G), which is a first-

order logic formula such that F |= H and H |= G, and each variable of H is a

variable of both F and G.

Definition 8 (Sound Interpolant). Given a transition system and an initial state

s0, given a safety property ψ and program point `, we say a formula Ψ is a sound

interpolant for `, denoted by SI(`, ψ), if for all state s ≡ 〈`, JsK〉 reachable from s0,

JsK |= Ψ implies that s is a safe root.

What we want now is to generate a formula Ψ (called interpolant), which still

preserves the safety of all states reachable from si, but is weaker (more general)
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than the original formula JsiK. In other words, we should have JsiK |= SI(`, ψ). We

assume that this condition is always ensured by any implementation of our state-

based interpolation. The main purpose of using Ψ rather than the original formula

associated to the symbolic state si is to increase the likelihood of subsumption.

That is, the likelihood of having JsjK |= Ψ is expected to be much higher than the

likelihood of having JsjK |= JsiK.

In fact, the perfect interpolant should be the weakest precondition [Dijkstra,

1975] computed for program point ` wrt. the transition system and the safety

property ψ. We denote this weakest precondition as wp(`, ψ). Any subsequent

state sj ≡ 〈`, JsjK〉 which has JsjK stronger than this weakest precondition can

be pruned. However, the weakest precondition, if exists, is too computationally

demanding. An interpolant for the state si is indeed a formula which approximates

the weakest precondition at program point ` wrt. the transition system, i.e., Ψ ≡
SI(`, ψ) ≡ Intp(JsiK,wp(`, ψ)). A good interpolant is one which closely approximates

the weakest precondition while can be computed efficiently.

The symbolic execution of a program can be augmented by annotating each pro-

gram point with its corresponding interpolants such that the interpolants represent

the sufficient conditions to preserve the unreachability of any unsafe state. Then,

the basic notion of pruning with interpolant can be defined as follows.

Definition 9 (Pruning with Interpolant). Given a symbolic state s ≡ 〈`, JsK〉 such

that ` is annotated with some interpolant Ψ, we say that s is pruned by the inter-

polant Ψ if JsK implies Ψ (i.e., JsK |= Ψ).

Program Path Analysis via Symbolic Execution

[Jaffar et al., 2008] was the first to introduce the concept of summarization with

interpolation. A summarization for a subtree helps reduce the likelihood of fully

considering other sub-trees with less general incoming contexts.

For each subtree at node si, reuse condition is generated by weakening or gen-
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eralizing the context JsiK, again by using the concept of interpolation. Essentially,

we generalize JsiK as long as we preserve the unsatisfiability of all the infeasible

paths appeared in the analyzed subtree. The algorithm backtracks and compounds

the summarizations computed by the child states and propagates to ancestors for

memoing and reuse.

In more details, when a path is analyzed, we extract an interpolant from the

formula associated with the symbolic states of its nodes. This is a more general

formula stored at each node that preserves all the infeasibility in the path. If one of

the nodes is encountered in another path such that its current formula entails the

previously computed interpolant and witness, we can avoid exploring the paths from

that node. We call this step the subsumption test. Whenever the subsumption test

fails (i.e., the entailment does not hold), symbolic execution will naturally perform

node splitting and duplicate all successors of the node until the next merge point.

Alternatively, if the test passes, a node merging is performed. The key insight is

that the subsumed node safely shares the analysis results of the subsuming node,

thus giving rise to the all-important computational optimization of reuse.

BBA

Ā

re-use

SUBSUMED

(a) Interpolation for Reuse

BBA

Ā

V V VX X X

NOT SUBSUMED

(b) Witness to Control Precision

Figure 2.3: Interpolation and Witness for Analysis

In Fig. 2.3(a) we assume that A and B are contexts associated to two sibling subtrees,

i.e., the nodes associate to a same program point. For brevity, we will refer to
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these subtrees as subtree A and subtree B. W.l.o.g., assume that we have finished

analyzing subtree A. In general the two subtrees possess lots of similarities and we

want to opportunistically avoid a full exploration of B. In Fig. 2.3(a), context B is

not subsumed by context A. However, using the concept of interpolation, context B

is subsumed by interpolant Ā, a generalization of context A. It means that solutions

computed in subtree A can be safely reused in B. We gain performance since, in

general, reusing is less costly than fully exploring subtree B.

The use of summarization with interpolation to avoid full path enumeration

is sound, since to-be-avoided subtrees do not contradict the analysis result already

computed for the original (to-be-reused) subtree. However, the original subtree may

contain far more paths than the (to-be-avoided) subtree with a less general context.

That is, the summarized result might come from a representative path1 which may

now be infeasible in the less general context. Therefore, though sound, the use of

interpolation may not guarantee the accuracy level we desire. For illustration, see

Fig. 2.3(b), where paths ending with crosses are infeasible. Though context B is

subsumed by interpolant Ā, reuse should not happen as the representative path for

A is no longer feasible in B.

To remedy that, [Jaffar et al., 2008] also introduces the concept of witness path.

Essentially, when a subtree of paths is analyzed, we also keep the witness, a sequence

of operations executed by the representative path of the subtree. Assume that we

analyze the subtree rooted at node si (having the context JsiK) and get back the

analysis result of which the representative path is θ ≡ si
ti1 :opi1−→ · · ·

tik :opik−→ sik . Our

algorithm keeps track of the suffix representative path originated from node si, the

sequence of operations ωi = opi1 ∧ ... ∧ opik . We will call ωi a witness path of the

subtree rooted at node si. A new node sj such that si and sj share the same program

point will not be further expanded if: (1) its incoming context JsjK is less general

than a previously computed interpolant Ψi of JsiK, i.e., JsjK |= Ψi; and (2) the new

1In general, there could be more than one representative paths which contribute to the analysis
result. For simplicity, here we assume one only.
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context demonstrates that the witness path holds, i.e., exec(JsjK, ωi) is satisfiable.

Otherwise, we say that node sj cannot be covered and a new expansion for that

node is required. In a loop-free program, witness path ensures that we achieve exact

analysis.

The symbolic execution of a program now can be augmented by annotating

each program point with its corresponding summarizations. Each summarization

contains an interpolant which represents the sufficient condition to preserve all the

infeasible paths, an analysis result γ witnessed by the witness ω. Then, the basic

notion of reuse with interpolant and witness can be defined as follows.

Definition 10 (Reuse with Interpolant and Witness). Given a symbolic state s ≡
〈`, JsK〉 such that ` is annotated with a summarization 〈Ψ, γ, ω〉, we say the result γ

can be re-used at s if:

1. JsK |= Ψ; and

2. exec(JsK, ω) is satisfiable.

In our symbolic execution framework implemented using CLP(R), we represent wit-

nesses as constraint formulas. These representations can be made efficient by using

CLP(R) projection [Jaffar et al., 1993], which we will briefly discuss in Chapter 3.
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Part I

Program Path Analysis
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Chapter 3

Loop Unrolling

Above all, I craved to seize the

whole essence, . . . , of some

situation that was in the process of

unrolling itself before my eyes.

Henri Cartier-Bresson

Programs use limited physical resources. Thus determining an upper bound on

resource usage by a program is often a critical need. In practice, it should be

possible for an experienced programmer, given him/her enough amount of time, to

extrapolate from the source code of a well-written program to its asymptotic worst-

case behavior. But it is often insufficient to just determine the asymptotic behavior

of programs.

“Concrete worst-case bounds are particularly necessary in the development of

embedded systems and hard real-time systems.” [Hoffmann et al., 2011]. In other

words, a sound and precise estimation of the resource consumption, for a specific

input and under a specific hardware platform, is often required. In this Chapter, we

focus on static estimation of the Worst-Case Execution Time (WCET). The computed

bounds allow safe schedulability analysis of hard real-time system. Static methods

emphasize safety by producing bounds on the execution time, guaranteeing that the
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execution time will not exceed these bounds.

A main issue in WCET analysis is to avoid pessimism while being safe in tim-

ing evaluation. Ideally, WCET estimation method should, given an input program,

produce a tight estimate of the upper-bound of the actual WCET. But first, we need

a timing model of the hardware platform, in order to come up with the worst-case

timing for each basic block in the CFG. This is usually referred to as the problem of

low-level analysis. Micro-architectural modeling for low-level analysis is non-trivial

and consequently it is almost impossible to achieve exact WCET estimates in CPU

cycles. Second, it is crucial to estimate accurately bounds for loops and eliminate

infeasible paths from bound calculation, especially in the presence of nested loops.

This can be partially addressed by requiring user-provided annotations about in-

feasible paths and loop bounds. Such annotations are usually referred to as user

assertions. Apart from considerable effort and error-proneness, sometimes the user

may not actually know such information. As such, for practicality, the provision

of assertions should be optional, rather than mandatory. A more attractive so-

lution is to automatically detect infeasible paths and derive loop bounds through

static path analysis methods [Altenbernd, 1996; Ermedahl and Gustafsson, 1997;

Gustafsson et al., 2005; Gustafsson et al., 2006].

Path analysis in general is performed separately from low-level analysis. [Theil-

ing et al., 2000], though of which path analysis is not fully automated, emphasizes

that precise WCET prediction can be achieved by doing low-level analysis and path

analysis separately. As a matter of fact, our path analysis is performed separately

from low-level analysis. It is intended to be combined with some low-level analysis

(e.g., [Theiling et al., 2000]), which gives a worst-case timing for each basic block.

When path analysis is performed separately from low-level analysis, a key is-

sue is the aggregation phase, lifting basic block timings (returned by some low-level

analysis) to the global timing. At this phase, the information about infeasible paths

and loop bounds is crucial because it allows us to exclude certain accumulations of
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for (i=0; i < n-1; i++)
for (j=0; j < n-1-i; j++) {

/* test and swap */
}

(a) Ex: bubblesort

for (i=0; i < n; i++)
for (j=0; j < n-i; j++) {

/* do something */
i++;

}
(b) Ex: amortized loop

for (i=0; i < 10; i++) {
if (i==4) { /* a */ }
/* b */

}
(c) Ex: down-sampling code

while (n > 1) {
if (n % 2 == 0)

n = n/2;
else n = 3*n+1;

}
(d) Ex: collatz

if (input == 0) {
/* do a */

} else { /* do b */ }

(e) Ex: propagation of input

if (E < 0) {cond = 0;} /* a */
else {cond = 1;} /* b */
if (cond) result = x/y; /* c */
else result = y; /* d */

(f) Ex: mutually exclusive paths

Figure 3.1: Challenging Program Patterns

basic block timings which do not correspond to valid paths. Our work adopts sym-

bolic simulation with loop unrolling for automatic and precise detection of infeasible

paths and loop bounds.

Infeasible path detection concerns path-sensitivity: without it, accuracy is seri-

ously hampered; but with it, how do we make any algorithm scale given the sub-

sequent explosion in the search space of the symbolic execution? For instance, in

Fig. 3.1(e), the WCET of a piece of code depends on the values of its input variables.

The fact of whether an analyzer can capture no/partial/full information about the

input variables might heavily affect its timing prediction. Similarly, in Fig. 3.1(f),

the paths (a,c) and (b,d) are mutually exclusive. Excluding those paths from bound

calculation might increase the analysis precision significantly [Altenbernd, 1996].

One trivial example is when the timing of a dominates the timing of b, while at the

same time the timing of c dominates the timing of d.
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We next discuss the inherent difficulties posed by complicated loops. Scalability

is discussed in the later Sections. Here we simply point out some technical aspects

of programs that exacerbate the already difficult problem.

• Non-rectangular loops: we often see triangular loops in sorting algorithms.

Fig. 3.1(a) shows bubblesort program. The number of iterations of the inner

loop is dependent on the specific iteration of the outer loop. In bounding the

total number of the inner loop iterations in this program, general techniques

working on parametric bounds would happily accept n2 as a good bound.

Nonetheless, we target the exact bound n(n− 1)/2 for each known value of n.

• Amortized loops [Gulwani and Zuleger, 2010]: in Fig. 3.1(b), the outer loop

counter being manipulated inside the inner loop makes it hard to give a tight

bound (linear instead of quadratic).

• Down-sampling code: predicting accurately the loop timing is hard if one part

of its body is executed less often than the rest of the body (Fig. 3.1(c)). When

the timing for /* a */ is significantly larger than the timing for /* b */, the

amount of overestimation might become unacceptable.

• Closed-form is not always possible: a WCET analysis can produce symbolic ex-

pressions which are solved (closed-form) by using off-the-shelf Computational

Algebraic Systems (CAS). However, to obtain a closed-form can be unreal-

istic [Vivancos et al., 2001], as the loop counter can be manipulated nonde-

terministically in each iteration. An extreme example is the famous Collatz

problem in Fig. 3.1(d) [Collatz, 1937]. It is desirable that a WCET analyzer

still returns something safe for a terminating program (e.g., Collatz problem

with a known value of n), even when its closed-form cannot be deduced.
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3.1 Contributions and Related Work

To the best of our knowledge, our work is the first fully automated general path

analysis method which attempts path-sensitivity and is able to discover and prove

tight upper bound of a resource variable, even in the presence of complicated pat-

terns such as non-rectangular and amortized loops, and down-sampling code even

when a closed-form cannot be obtained by traditional CAS. By prove here we mean

that all infeasible paths detected and used in our analysis are checked by the un-

derlying theorem prover. In the end, we produce not only a bound but also a proof

tree so that a third party verifier can certify that the result is safe.

Our method is brute-force as loops are unrolled. It is different from tradi-

tional abstract interpretation (AI) [Cousot and Cousot, 1977] methods dealing with

bounds in a way that it never attempts to discover invariants for loops. Instead,

we ensure constraints which are not modified in divergent ways can be propagated

and preserved through loops. Specifically, variant effects caused by the loop bodies

are abstracted and summarized using a polyhedral domain [Cousot and Halbwachs,

1978]. It turns out that this approach is very successful in maintaining flow infor-

mation stretching across loop-nesting levels and between different loops. The reason

is that, though a loop can be complicated, variant effects from different paths in the

loop body to variables affecting the control flow of the program, usually agree upon

one abstract value. Thus abstraction is not lossy and crucial flow information can

be captured precisely. Experimental results show that, very often, we can come up

with not only the exact timing for a benchmark, but also its exact ending context

(or its best approximation wrt. the abstract domain used).

A significant work on WCET analysis employing symbolic simulation is done

in [Lundqvist and Stenström, 1999]. There low-level analysis and path analysis are

combined in one integrated phase. However, that approach has several problems.

First, it can only cope with a very simple abstract domain. This leads to limitations

in detection of infeasible paths. Second, for the same reason, the approach has
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a termination issue with some common programming patterns (see the discussion

in [Lundqvist and Stenström, 1999]). Finally, the analysis time is always at least

proportional to the actual execution time of the input program. “It leads to a very

long analysis since simulation is typically orders of magnitudes slower than native

execution” [Wilhelm et al., 2008].

Indeed, exhaustive symbolic execution is very expensive because of both the

breadth and depth of the resulting tree. To address the breadth issue, one requires

a notion of merge. The analysis precision is then heavily affected by the power of the

employed abstract domain. For example, the works [Ermedahl and Gustafsson, 1997;

Gustafsson et al., 2005; Gustafsson et al., 2006] employ a form of abstract execution,

essentially a combination of symbolic execution and abstract interpretation, using

the interval domain. By using the most accurate setting in its AI framework, the

method performs full path enumeration and does not scale. To make it practical,

similar to [Lundqvist and Stenström, 1999], path-merging is introduced at different

levels. We now briefly mention our merits in avoiding full path enumeration while

attempting path sensitivity.

Our method first addresses the breadth issue using compounded summarization.

For a loop-free program, we guarantee to produce the exact bound while avoiding

full path enumeration. For programs with loops, we introduce path-merging only at

the end of each loop body. However, we employ a more powerful abstract domain,

i.e., the polyhedral domain. This obviously results in tighter loop bounds and

better detection of infeasible paths. Consequently, our path analysis will be more

precise than path analysis performed by [Lundqvist and Stenström, 1999; Ermedahl

and Gustafsson, 1997; Gustafsson et al., 2005; Gustafsson et al., 2006]. Another

enhancement due to the use of the polyhedral domain is that we do not have any

termination issue with common programming practices.

Now consider the depth issue, and this is most affected by loop unrolling. Clearly,

analysis must be at least proportional to a concrete execution trace of the pro-
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gram [Wilhelm et al., 2008]. For example, the number of states visited by sim-

ulating a single-path1 quadratic program will be at least of quadratic complexity.

[Lundqvist and Stenström, 1999] essentially symbolically executes a fixed number of

paths. Thus its performance is mainly determined by the length of the longest path.

Even so, that technique does not scale. Similarly, [Ermedahl and Gustafsson, 1997;

Gustafsson et al., 2005; Gustafsson et al., 2006] do not address the depth issue.

In contrast, we address this fundamental challenge, but now, using vertically com-

pounded summarizations. This results in a behavior which we call depth-wise loop

compression. This is innovative. It gives rise for the simulation to be reduced to lin-

ear complexity for some highly nested loops, even though those loops’ complexities

are of much higher order. For instance, we can derive the exact bound of bubblesort,

a quadratic program, in a linear number of steps. For further discussion later, we

make the following definitions.

Definition 11 (Size Parameter of A Program). For each program such that its

asymptotic time complexity can be expressed in terms of a single variable, indicating

the size of the program instance, that single variable is called the size parameter2 of

the program.

Definition 12 (Reduced to Linear Complexity). We say that our path analysis on

program P is reduced to linear complexity if, in terms of a size parameter n, (1)

the number of states symbolically executed in the analysis is O(n), whereas (2) the

time complexity of P is worse than O(n).

Our method naturally supports compositional reasoning, which makes it scale

well. Large programs can now be easily split up into a number of smaller programs

and the analyzing process can be done in a pipelined manner. In the case that

continuation/ending context of a program fragment is captured precisely, we do not

compromise the accuracy of the analyses for subsequent fragments.
1Every conditional branch is deterministic.
2For instance, in sorting algorithms, it is the size of the input array.
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Unlike recent methods [Hoffmann et al., 2011; Gulwani and Zuleger, 2010; Bygde

et al., 2009], we do not infer parametric bounds for programs. In fact, the outputs

we produce are concrete bounds and our method only successfully returns a bound

for program on which the symbolic execution terminates. However, by sticking

to concrete bounds, we can handle a bigger class of programs and also have the

opportunities to discover tighter (often exact) bounds.

Finally, we again mention the work [Jaffar et al., 2008] from which some concep-

tual ideas of this Chapter were originated. There the authors address the resource-

constrained shortest path (RCSP) problem, which is simpler (though NP-hard) than

WCET. In RCSP, the cost of traveling from one node to another in a weighted graph,

subject to path feasibility determined by some bounds on the resources consumed

while traveling, is minimized. The paper introduces the use of interpolation and

witnesses for the RCSP problem, but is limited to loop-free programs. Furthermore,

in RCSP setting, witness path testing can simply be done by recording the amount

of resources consumed by the witness, and checking that the adding of the amount

to the current consumption does not result in bound violation. In this Chapter, the

corresponding problem is far harder.

3.2 Path Analysis vs. Timing Model

Path analysis in general is performed separately from low-level analysis. As a matter

of fact, the work [Theiling et al., 2000], though of which path analysis is not fully

automated, emphasizes that precise WCET prediction can be achieved by doing low-

level analysis and path analysis separately.

When performed separately from with path analysis, low-level analysis often

works on control flow graphs (CFG), containing basic blocks as nodes, and on call

graphs (CG). The result of this phase is a worst-case execution time for each basic

block of the program under examination.

The contribution of a basic block to the timing of a program may vary widely
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depending on the execution history. Therefore, by considering timings for basic

blocks in their control flow context, precision of low-level analysis can be significantly

increased. Due to context distinction, nodes in the original graphs are potentially

transformed into several nodes in the analysis graphs (called the extended CFG).

For instance, in [Theiling et al., 2000], contexts indicate through which sequence

of function calls and loop iterations control arrives at a basic block. More context

distinction offers more accurate bounds. However, for scalability reason, in all WCET

tools available, the maximum number of different contexts for each basic block is

bounded statically. We define this scenario as static timing model.

Definition 13 (Static Timing Model). A low-level analysis is said to follow the

static timing model (STM) iff for each basic block in the original CFG of each

program under examination, the maximum number of different contexts , therefore

different timings, can be bounded statically by a constant which must not depend

on the size parameter of the input program.

The dynamic timing model (DTM) can be easily defined as opposed to static

timing model. The work [Lundqvist and Stenström, 1999] indeed follows DTM.

In theory, DTM offers precise WCET prediction at the cost of scalability. This is

because DTM in general requires low-level analysis and path analysis being coupled

together.

On the contrary, WCET tools of which the low-level analysis follows STM have

a better chance to scale. Works performing persistent analysis to capture the be-

haviors of loops, e.g., [Theiling et al., 2000; Huynh et al., 2011], actually follow the

static timing model.

In summary for this discussion, while analysis following the dynamic timing

model will in principle produce more accurate results, e.g., [Lundqvist and Sten-

ström, 1999], its effective use is presently beyond reach; there is no scalable analysis

using the dynamic timing model yet. Thus our work is designed in such a way that it

can be combined with any low-level analysis, which follows the static timing model,
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to produce safe WCET bounds.

3.3 Overview

We formulate the WCET path analysis of a program over a symbolic execution

tree where each path of the tree is a succession of nodes, each associated with a

program point in the program. Each edge is labeled with a statement executed

in the corresponding symbolic execution step. In practice, each statement here is

replaced by a distinct basic block in the extended CFGs. As usual, the initial state

is s0. The context Js0K represents the knowledge about the input of the program.

Due to conditional branches and loops, we may come to a same program point

but with different contexts. Our method performs depth-first traversal, terminating

each path at a state s whenever we are at an ending point of the program, or when

JsK is unsatisfiable, i.e., an infeasible path is detected. In either case, the algorithm

records certain information about JsK — as a form of learning — and backtracks to

the next path.

Multiple contexts allow us to tighten our WCET estimation and prune out

unnecessary traversal due to the exclusion of infeasible paths. Unfortunately, a

simple enumeration of all contexts is still exponential. In the presence of loops and

nested loops, it is even worse (e.g., a simple unnested loop of 100 iterations with

just one conditional branch in its body results in 2100 contexts at the end). Not

only employs the concept of reuse with interpolation and witness, our algorithm

also performs iteration abstraction at the end of each loop body. Essentially, every

iteration of a loop is analyzed as a separate subtree, where end points of the loop

body are treated as terminal points of paths. Similar to [Lundqvist and Stenström,

1999; Gustafsson et al., 2005], we reduce the breadth of the symbolic tree by merging

paths3. This produces only one continuation context for analysis of subsequent

program fragment.
3Though we make use of polyhedral domain.
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re-use

path merging

path merging

summarize
one iteration

reuse in
later iteration

summarize
one iteration

(a)

re-use

reuse in
re-use

reuse in

sequence of summarizations
for the inner loop

the outer loop

the outer loop

(b)

Figure 3.2: Iteration Abstraction and Summarizations of Loop

Furthermore, upon finishing the symbolic subtree of an iteration, we compute its

summarization. This gives rise for reuse to happen in a vertical manner. That is,

analyses for subsequent iterations with similar behaviors can be quickly deduced

(Fig. 3.2(a)). More importantly, however, our summarizations for (inner) loop iter-

ations can be combined vertically for later reuse in the outer loop (Fig. 3.2(b)), so

that our path analysis can be reduced to linear complexity. We will illustrate more

on this in Section 3.5.

Our work can be viewed as an opportunistic method for the application of dy-

namic programming. Though the concepts of interpolation and summarization have

already been well studied, we believe that having them to work with the semantics

of exhaustive loop unrolling and path merging while attempting path-sensitivity is

a significant contribution.

3.4 Preliminaries

For presentation purpose, in this Chapter, we only deal with structured while loops.

We assume that for every loop, there is only one entry node, with exactly one

guarded entry transition (to go into the body of the loop) and one guarded exit
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transition.

The programs now include an additional variable: the timing variable t. Here,

the variable of interest t models the execution time. Note that this variable is always

initialized to 0 and the only operation allowed upon it is a concrete increment. In

practice, our method works on basic blocks and the amount of increment at each

point will be given by some low-level analysis module (e.g., [Theiling et al., 2000]).

The variable t is not used in any other way. (The context on t is never used to

determine any infeasible path.) For simplicity, in some later examples we just assume

every transition uniformly increments t by 1. The purpose of our path analysis is

to compute a sound and precise bound for t at the end of the execution (across all

feasible paths of the program).

A WCET tool usually takes in binary program as input. However, it is much

easier for us to perform symbolic execution on transition systems. Translation

from binaries into transition systems, similar to the CFG reconstruction problem,

is a non-trivial task. Fortunately, the task becomes trivial by making use of the

work [Theiling, 2002]. Consequently, for clarity and simplicity, our path analysis

will be presented on C programs and their transition systems.

〈1〉 c = 0;
〈2〉 if (a > 0) 〈3〉 t = t + 1;
〈4〉 if (b > 0) 〈5〉 t = t + 2;
〈6〉 if (c > 0) 〈7〉 t = t + 3;
〈8〉

(a) A Program Fragment

〈〈1〉, c := 0, 〈2〉〉
〈〈2〉, assume(a > 0), 〈3〉〉
〈〈3〉, t := t + 1, 〈4〉〉
〈〈2〉, assume(a ≤ 0), 〈4〉〉

...
(b) The Transition System

Figure 3.3: From a C Program to its Transition System

EXAMPLE 3.1 : Consider the program fragment in Fig. 3.3(a). The program points

are enclosed in angle brackets. Some of the transitions are shown in Fig. 3.3(b). For

instance, the transition 〈〈1〉, c := 0, 〈2〉〉 represents that the system state switches

from program point 〈1〉 to 〈2〉 executing the operation c := 0.

Recall that our transition system is a directed graph. We now introduce concepts
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which are required in our loop unrolling framework.

Definition 14 (Loop). Given a directed graph G(V,E) (our transition system), we

call a strongly connected component S = (VS , ES) in G with |ES | > 0, a loop of

G.

Definition 15 (Loop Entry). Given a directed graph G(V,E) and a loop L =

(VL, EL) of G, we call E ∈ VL a loop entry of L, also denoted by E(L), if no

node in VL, other than E has a direct predecessor outside L.

As we restrict the discussion to structured loops only, indeed, there is no node

in a loop, other than the loop entry, having a direct successor outside that loop.

Definition 16 (Ending Point of Loop Body). Given a directed graph G(V,E), a

loop L = (VL, EL) of G and its loop entry E. We say a node u ∈ VL an ending point

of L’s body if there exists an edge (u, E) ∈ EL.

We also assume that each loop has only one unique ending point. For each loop,

following the back edge from the ending point to the loop entry, we execute a void

operation. This assumption can be easily achieved by a preprocessing phase.

Definition 17 (Same Nesting Level). Given a directed graph G(V,E) and a loop

L = (VL, EL), we say two nodes u and v are in the same nesting level if for each

loop L = (VL, EL) of G, u ∈ VL iff v ∈ VL.

Definition 18 (Summarization of a Subtree). Given two program points `1 and `2

such that `2 post-dominates `1. Assume that we analyze all the paths from entry point

`1 to exit point `2 wrt. an incoming context JsK. The summarization of this subtree

is defined as the tuple [`1, `2,WCET,∆,Ψ, ω], where WCET is the worst case timing

from `1 to `2 and the corresponding path is witnessed by ω, abstract transformer

∆ is a binary input-output relation between program variables at `1 and `2, and

interpolant Ψ is the condition under which this summarization can be safely reused.
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Let wp be the weakest condition such that if we examine the subtree with wp

as the incoming context, all infeasible paths (nodes) discovered by previous anal-

ysis (using context JsK) are preserved. As we all know, computing the weakest

precondition [Dijkstra, 1975] in general is expensive. The interpolant Ψ is indeed

an efficiently computable approximation of wp. Specifically, we can define Ψ as

Intp(wp, JsK) (recall the concept of Craig interpolant in Chapter 2).

By definition, the abstract transformer ∆ will be the abstraction of all feasible

paths (wrt. the incoming context JsK) from `1 to `2. Its behavior is similar to a

witness. However, as it represents a number of feasible paths, in general, an ab-

stract transformer is not a functional relation. We note here that this concept of

abstract transformer is different from the concept of abstract transition developed

in [Podelski and Rybalchenko, 2005]. Our abstract transformer is a safe approxi-

mation for the input-output relationship of a finite tree, whereas in [Podelski and

Rybalchenko, 2005], an abstract transition approximates a path (possibly infinite

due to the construction of the closure from the transition relation).

EXAMPLE 3.2 : 〈1〉 if (*) {x++; t++;} else {x+=2; t+=2;} 〈2〉 can be sum-

marized as [〈1〉, 〈2〉, 2, x := x + 1 ∨ x := x + 2, true, x := x + 2]. Of course, in

practice, we need to avoid the exponential blowup in the size of the abstract trans-

former. In our implementation built upon CLP(R), we use the polyhedral domain

for computing the abstract transformer. As a result, the summarization we compute

is [〈1〉, 〈2〉, 2, x+ 1 ≤ x′ ≤ x+ 2, true, x′ = x+ 2].

Definition 19 (Summarization of a Program Point). A summarization of a program

point ` is the summarization of all paths from ` to `′ (wrt. the same context), where

`′ is the nearest program point that post-dominates ` s.t. `′ is of the same nesting

level as ` and either is (1) an ending point of the program, or (2) an ending point

of some loop body.

As `′ can always be deterministically deduced from `, in the summarization of

program `, we usually omit the component about `′.
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3.5 Motivating Examples

1#1

2#1

3#1

4#1 4#2

5#1

6#1

8#1

6#2

5#2

6#3

8#2 8#3

6#4

8#5
7#1

7#2 7#3 7#4

c := 0

assume(a>0)
assume(a≤0)

t := t+1

assume(b>0)
assume(b≤0)

assume(b>0)

t := t+2

assume(c>0) assume(c≤0)
assume(c>0)

assume(c≤0)
assume(c>0)

assume(c≤0)
assume(c>0)

assume(c≤0)

t := t+2

assume(b≤0)

(a) Without Interpolation

1#1

2#1

3#1

4#1 4#2

5#1

6#1

8#1

6#2

7#1

c := 0

assume(a>0)
assume(a≤0)

t := t+1

assume(b>0)

assume(b≤0)

t := t+2

assume(c≤0)

covers

covers

assume(c>0)

(b) With Interpolation

Figure 3.4: Infeasible Paths in Analyses

EXAMPLE 3.3 (Infeasible Paths): Consider the transition system in Fig. 3.3(b) and

its (full) symbolic execution tree in Fig. 3.4(a). Node is labeled P#C where P is the

program point and C the context identifier. We label edge by the corresponding
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statement. We represent a node before assume statements with diamond, a node

before assignment statements with box, and terminal node with ellipse. Feasible

transition is denoted by arrowed edge, and infeasible transition by edge with a dotted

head.

Without path sensitivity, the path 〈1〉〈2〉〈3〉〈4〉〈5〉〈6〉〈7〉〈8〉, executing the then

bodies of all the 3 if statements, would be considered for bound calculation. This

gives 6 as the longest path. However, with path sensitivity as in Fig. 3.4(a), going

from program point 〈6〉 to program point 〈7〉 is not feasible since c = 0 ∧ c > 0 ≡
false (or the path condition at 〈7〉 would contain the constraint 0 > 0). Thus, we

infer a tighter bound of 3.

So far, we have illustrated a well-understood benefit of detecting infeasible paths

to tighten the estimate. Fig. 3.4(b) depicts a tree computed by our method. The

key idea is to generalize the context of each node (if possible) in order to increase

the likelihood for reuse, thus we avoid full path enumeration. In this example, our

algorithm enlarges the contexts of the nodes 4#1 and 6#1 to the formula c ≤ 0

since this formula is enough to keep the infeasible path detected at 7#1. Then,

whenever their siblings 4#2 and 6#2 are visited with the contexts c = 0∧ a ≤ 0 and

c = 0∧a > 0∧ b ≤ 0, respectively, our algorithm tests that 4#2 and 6#2 are covered

by their siblings since those new contexts are less general (i.e., c = 0∧a ≤ 0 |= c ≤ 0

and c = 0 ∧ a > 0 ∧ b ≤ 0 |= c ≤ 0). In Fig. 3.4(b), coverage/reuse is denoted by

dashed edge labeled with “covers”.

〈1〉 if (a > 0)
〈2〉 t = t + 1;
〈3〉 else {
〈4〉 t = t + 2;
〈5〉 x = 0;
}

〈6〉 if (x > 0)
〈7〉 t = t + 3;
〈8〉
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EXAMPLE 3.4 (Witness Paths): Though covering a node (using interpolant) may re-

duce the search space while preserving correctness, it does not necessarily preserve

accuracy of the analysis. Consider the program fragment above. A possible analysis

in Fig. 3.5(a). The interpolant associated with the subtree rooted at 6#1 is true since

there are no infeasible paths. Hence 6#1 covers the context of 6#2. Using the same

reasoning as in previous example, a possible WCET estimate is 5 by considering the

path: 〈1〉 〈4〉 〈5〉 〈6〉 〈7〉 〈8〉 (note that this path is infeasible though). The estimate

is calculated by adding 2 from the transition 4#1 to 5#1 and 3 from transition 7#1

to 8#1.

1#1

2#1 4#1

3#1

6#1 6#2

7#1

8#1 8#2

5#1

assume(a>0) assume(a≤0)

t := t+1

assume(x>0)

assume(x≤0)

t := t+3

t := t+2

x := 0

covers

(a) Without Witness: Longest Path =
5

1#1

2#1 4#1

3#1

6#1 6#2

7#1

8#1 8#2

5#1

assume(a>0) assume(a≤0)

t := t+1

assume(x>0)

assume(x≤0)

t := t+3

t := t+2

x := 0

7#2

assume(x>0)

8#3

assume(x≤0)

(b) With Witness: Longest Path = 4

Figure 3.5: Witnesses Improve Precision

For better precision, we should expand 6#2, shown in Fig. 3.5(b) The key observation

is that the new subtree rooted at 6#2 contains an infeasible path if x ≤ 0. This

infeasible path eliminates the potential path from 6#2 to 7#2 which would have

provided a longer (5) but spurious answer. Thus we are left with a tighter estimate

(4) from the path 1#1, 2#1, 3#1, 6#1, 7#1, and 8#1.
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This example illustrates the need to strengthen the condition of coverage for

better accuracy. This is done by storing at each subtree, a witness ω which concretely

represents the WCET path for that very subtree. This witness is then used (in

conjunction with the interpolant) to determine coverage/reuse.

In Fig. 3.5(b), the context at node 6#2 is Js6#2K ≡ a ≤ 0∧x = 0. The interpolant

at 6#1 is Ψ6#1 ≡ true. It is straightforward to see that Js6#2K |= Ψ6#1. In addition, we

now test if the witness still holds, i.e., we are testing whether (ω6#1 ≡ x > 0)∧Js6#2K

is satisfiable. Since a ≤ 0∧x = 0∧x > 0 is unsatisfiable, the algorithm must explore

the node 6#2, thus obtaining a more precise (actually the exact) bound.

EXAMPLE 3.5 (Superlinear): Consider the bubblesort program as the following:

〈0〉 i = 0, n = 4;
〈1〉 while (i < n-1) {
〈2〉 j = 0;
〈3〉 while (j < n-1-i) {
〈4〉 if (*) {
〈5〉 /* swap(a, j, j+1) */

}
〈6〉 j++;
〈7〉

}
〈8〉 i++;
〈9〉

}
〈10〉

The analysis is in Fig. 3.6. We represent a separate computation for an iteration as

a rectangle with double boundaries. Each when summarized and memoed will be

replaced by a single abstract transition denoted as a double-headed arrow. Reuse

of summarization is denoted as a double-bodied arrow with the program point and

previously encountered context attached. For space, we also shorten the syntax for

our assume and assignment operations. For simplicity, in this example, every (non-

abstract) transition increments the timing variable t by 1 (even for swap function).

Witness paths are also omitted as they do not improve accuracy in this example.
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〈3#2〉

〈3#3〉

Figure 3.6: Superlinear Analysis of bubblesort

We arrive at 2#1 analyzing the first iteration of the outer loop. From choice point

3#1 we go into the first iteration of the inner loop. The path 4#1 5#1 6#1 7#1 is

analyzed normally. The summarizations of program point 〈6〉 and program point

〈5〉 are computed and stored during backtracking. It is worth to note that the

summarization for 6#1 is [〈6#1〉, 1, j′ = j + 1, true, ·] (it is implicitly understood

that i′ = i ∧ n′ = n). In the next visit of 〈6〉, which is 6#2, we obviously can make

use of that summarization.

The summarization for 4#1 then is computed as [〈6#1〉, 3, j′ = j + 1, true, ·].
The WCET is the maximum increment for the timing variable t by considering both

paths originated from 4#1. The interpolant simply is true as there are no infea-

sible paths. The abstract transformer is combined from the two paths, which is

(swap(a, j, j + 1) ∧ j′ = j + 1) ∨ (j′ = j + 1). After simplification (here we ignore
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the effects on array a), it yields just j′ = j+ 1. The whole iteration is then replaced

by a single transition (double headed arrow) from 3#1 to 3#2, making use of the

abstract transformer ∆ ≡ j < n − 1 − i ∧ j′ = j + 1 (note that the loop entry

condition is included). We continue the analysis of 3#2 with one abstract context,

〈〈3#2〉, i = 0 ∧ j = 1 ∧ n = 4〉. Similarly, we go into the body of the inner loop

at 4#2 and 4#3, making use of the previous summarization for 4#1 to continue the

analysis. At 3#4, the attempt going into the inner loop body fails as an infeasible

path is detected.

When we backtrack, by treating double-headed arrows as normal transitions, we

come up a serialization (4 instances) of compounded summarizations for program

point 〈3〉:
[〈3#4〉, 3, i′ = i+ 1, n− 1− i ≤ j, ·]
[〈3#3〉, 7, i′ = i+ 1 ∧ j′ = j + 1, n− 2− i ≤ j < n− 1− i, ·]
[〈3#2〉, 11, i′ = i+ 1 ∧ j′ = j + 2, n− 3− i ≤ j < n− 2− i, ·]
[〈3#1〉, 15, i′ = i+ 1 ∧ j′ = j + 3, n− 4− i ≤ j < n− 3− i, ·]

The abstract transformers for those summarizations are computed in a similar man-

ner as how the abstract transformer for 4#1 is computed. On the other hand, the

interpolant for 3#4 is the weakest condition which ensures the attempt re-entering

the loop body at 3#4 fails, i.e., the corresponding infeasible path is preserved. The

interpolant for 3#3 preserves not only such infeasible path but also the infeasi-

ble path on the attempt exiting the loop at 3#3. Similarly, the process goes on

for 3#2 and 3#1. Utilizing compounded summarization saves us from analyzing

the inner loop again in the future exploration of subsequent outer loop’s itera-

tions. Specifically, at 3#5, we reuse the summarization of 3#2; while, at 3#6, we

reuse the summarization of 3#3. As a result, even though the complexity and the

WCET of bubblesort program is quadratic to n, the number of the inner loop’s it-

erations explored by our method is just linear to n. This behavior remains (for

similar programs) even when we introduce more nesting levels. This fact sets
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us apart from other typical simulation approaches (e.g., [Gustafsson et al., 2005;

Lundqvist and Stenström, 1999]).

3.6 Symbolic Simulation Algorithm

function SS(s,P)
Let s be 〈`, JsK〉

〈1〉 if (JsK ≡ false) return [`,−∞, false, false, false]
〈2〉 if (outgoing(`,P) ≡ ∅) return [`, 0, Id(x̃, x̃′), true, true]
〈3〉 if (loop end(`,P)) return [`, 0, Id(x̃, x̃′), true, true]
〈4〉 S := memoed(s)
〈5〉 if (S 6≡ false) return S endif
〈6〉 if (loop entry(`,P))
〈7〉 S1 := [`,WCET,∆(x̃, x̃′),Ψ(x̃), ω(x̃)]

:= TransStep(s,P, {entry(`,P)}) /* Unroll the first iteration */
〈8〉 if (ω(x̃) ≡ false)
〈9〉 S := JoinHorizontal(S1,TransStep(s,P, {exit(`,P)}))

else

〈10〉 s
∆(x̃,x̃′)−−−−−→ s′ /* Execute abstract transition ∆(x̃, x̃′) */

〈11〉 Sn−1 := SS(s′,P) /* Recursively unroll the loop */
〈12〉 Sn :=JoinVertical(S1,Sn−1)
〈13〉 S := JoinHorizontal(Sn,TransStep(s,P, {exit(`,P)}))

endif
else

〈14〉 S := TransStep(s,P, outgoing(`,P))
endif

〈15〉 memo and return S
end function

Figure 3.7: Symbolic Simulation Algorithm: Main Function

In this Section, our presented algorithm (shown in Fig. 3.7 and 3.8) only deals with

loops. Recursive functions can be treated in a similar manner. Our symbolic sim-

ulation algorithm manipulates a global memo table, which is initialized to empty.

During analysis, new summarizations of the form [`,WCET,∆(x̃, x̃′),Ψ(x̃), ω(x̃)] (as

in Def. 19) will be inserted into the memo table (line 15). Here we use x̃ to refer the
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function JoinVertical(S1,S2)
Let S1 be [`,WCET1,∆1(x̃, x̃′),Ψ1(x̃), ω1(x̃)]
Let S2 be [`′,WCET2,∆2(x̃′, x̃′′),Ψ2(x̃′), ω2(x̃′)]

〈16〉 WCET := WCET1 + WCET2

〈17〉 ∆(x̃, x̃′′) := ∆1(x̃, x̃′) ∧ ∆2(x̃′, x̃′′)
〈18〉 Ψ(x̃) := Ψ1(x̃) ∧ pre(∆1(x̃, x̃′),Ψ2(x̃′))
〈19〉 ω(x̃) := ω1(x̃) ∧ ∆1(x̃, x̃′) ∧ ω2(x̃′)
〈20〉 return [`,WCET,∆(x̃, x̃′′),Ψ(x̃), ω(x̃)]
end function

function JoinHorizontal(S1, S2)
Let S1 be [`,WCET1,∆1(x̃, x̃′),Ψ1(x̃), ω1(x̃)]
Let S2 be [`,WCET2,∆2(x̃, x̃′),Ψ2(x̃), ω2(x̃)]

〈21〉 if (WCET1 ≥ WCET2)
〈22〉 WCET := WCET1

〈23〉 ω(x̃) := ω1(x̃)
else

〈24〉 WCET := WCET2

〈25〉 ω(x̃) := ω2(x̃)
endif

〈26〉 ∆(x̃, x̃′) := ∆1(x̃, x̃′) ∨ ∆2(x̃, x̃′)
〈27〉 Ψ(x̃) := Ψ1(x̃) ∧ Ψ2(x̃)
〈28〉 return [`,WCET,∆(x̃, x̃′),Ψ(x̃), ω(x̃)]
end function

function TransStep(s,P,TransSet)
Let s be 〈`, JsK〉

〈29〉 S := [`, 0, false, true, true]
〈30〉 foreach (trans ∈ TransSet ∧ trans contains t := t+α) do
〈31〉 s

trans−−−→ s′ /* Execute trans */
〈32〉 [`′,WCET,∆,Ψ, ω] := SS(s′,P)
〈33〉 S := [`,WCET + α, combine(trans,∆), pre(trans,Ψ), combine(trans, ω)]
〈34〉 S := JoinHorizontal(S,S)

endfor
〈35〉 return S
end function

Figure 3.8: Symbolic Simulation Algorithm: Helper Functions
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set of program variables. For better understanding, and also to be closer to our im-

plementation, different versions of x̃ are used to indicate the changes of the program

variables by functions/predicates. For example, the abstract transformer ∆(x̃, x̃′)

indicates the changes of the program variables from x̃ to x̃′ while the interpolant

Ψ(x̃) indicates a constraint formula on the program variables x̃.

In constructing compounded summarization, we rely on two important func-

tions, namely JoinVertical and JoinHorizontal. Each of them takes in, as inputs, two

summarizations S1 and S2, respectively summarizing two subtrees T1 and T2. T1

and/or T2 could well be just a single transition. In fact, even when they are not, we

still treat them each as a single abstract transition, the abstract transformer plays

the role of the transition relation. We first explain these two crucial functions.

Then, we will discuss our algorithm as a whole. Some implementation details are

deferred till Section 3.7.

Compounding Vertically two Summarizations: We achieve this by JoinVertical in

Fig. 3.8. JoinVertical summarizes a compounded subtree T , where T2 suffixes T1.

In other words, a path θ1 in T1 followed by a path θ2 in T2 corresponds a path θ

(possibly infeasible) in T . The WCET of T is computed intuitively (line 16) whereas

T ’s abstract transformer is computed as the conjunction of the abstract transform-

ers of T1 and T2 (line 17). Similar for the case of T ’s witness path (line 19).

The only difference is that, T1’s witness and T2’s witness are related by the ab-

stract transformer ∆1 of T1. By treating T1 as an abstract transition, computing

the interpolant for T relies on the operation pre(∆1(x̃, x̃′),Ψ2(x̃′)) to produce a

formula which under-approximates the weakest precondition of the postcondition

Ψ2(x̃′) wrt. the transition relation ∆1(x̃, x̃′). That is, approximating the formula

∆1(x̃, x̃′)→ Ψ2(x̃′) [Bjørner et al., 1997].

Compounding Horizontally two Summarizations: We achieve this by JoinHorizontal in

Fig. 3.8. JoinHorizontal summarizes a compounded subtree T , where T1 and T2 are

siblings. This is the join operation that we often see in other techniques [Lundqvist
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and Stenström, 1999; Ermedahl and Gustafsson, 1997; Gustafsson et al., 2005]. The

compounded WCET and witness are computed intuitively (lines 21-25). Preserv-

ing all infeasible paths in T requires preserving infeasible paths in both T1 and T2

(line 27). The input-output relationship of T is safely abstracted as the disjunction

of the input-output relationships of T1 and T2 respectively (line 26).

Inputs and Output: The inputs of our main function, namely SS, include the

current symbolic state s and the transition system P deduced from the original

program.

Initially, SS is invoked with the initial state s0 ≡ 〈`0, Js0K〉, where Js0K captures

the input information of the original program. For a given state s, SS performs a

depth-first traversal of the execution tree rooted at s; summarizations are collected in

a post-order manner. Its final product is a summarization [`0,WCET,∆(x̃, x̃′),Ψ(x̃), ω(x̃)],

representing the whole analyzed program.

When to Reuse: Function memoed checks whether a summarization has already

been memoed and can be reused. Specifically, given a symbolic state s ≡ 〈`, JsK〉, we

use memoed(s) to test if there is a tuple S ≡ [`,WCET, ∆(x̃, x̃′),Ψ(x̃), ω(x̃)] stored

before such that JsK |= Ψ(x̃) and ω(x̃) ∧ JsK is satisfiable. If yes, we say that we

reuse at s and return S. Otherwise, false is returned.

Base Cases: Our algorithm is most naturally implemented recursively. The func-

tion SS handles four base cases. First, when the context JsK is unsatisfiable (line 1),

no execution needs to be considered. Note that here the path-sensitivity plays a role

since only (provably) executable paths will be considered. Second, the algorithm

checks if s is a terminal state (line 2). Here Id(x̃, x̃′) ≡ ∀i ∈ {1, ..., |x̃|} • x̃′[i] = x̃[i],

i.e., it represents the transition relation for void operation. Ending point of a loop

is treated similarly in the third base case (line 3). The last base case, lines 4-5, is

the case that a summarization can be reused.

Expanding to next Program Points: Line 14 depicts the case when transitions

can be taken from the current program point `, and ` is not a loop starting point.
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Here we call TransStep to move recursively to next program points. The returned

value is then passed on. TransStep implements the traversal of transition steps

emanating from ` by calling SS recursively and then compounds the returned sum-

marizations into a summarization of `. The arguments of TransStep are a state s,

the transition system P, and a set of outgoing transitions TransSet to be explored.

For each transition in TransSet , TransStep extends the current state with the

transition. Resulting child state is then given as an argument in a recursive call to

SS (line 32). From each summarization of a child returned by the call to SS, the

algorithm computes a component summarization, contributed by that particular

child to the parent (line 33). All of such components will be compounded using the

JoinHorizontal function (line 34).

The interpolant for the child state is propagated back to its parent using the

precondition operation pre, where pre(t,Ψ) denotes the precondition of the post-

condition Ψ wrt. the transition t. In an ideal case, we would want this operation

to return the weakest precondition. But in general that might not be affordable.

The combine function simply conjoins the corresponding constraints and performs

projections to reduce the size of the formula.

Loop Handling with Compounded Summarization: Lines 7-13 handle the

case when the current program point is the loop entry point. For simplicity, we

assume all loops to be in the form of structured while loops, where entry denotes

the transition going into the body of the loop, and exit denotes the transition exiting

the loop.

Upon encountering a loop, our algorithm attempts to unroll it once by calling

procedure TransStep to explore the entry transition (line 7). When the returned

witness is false, it understands that we cannot go into the loop body anymore,

thus proceeds to exit branch. The returned summarization is compounded (using

JoinHorizontal) with the summarization of previous unrolling attempt (line 9). On

the contrary, if some feasible paths found by going into the loop body, we use the
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returned abstract transformer to produce a new context. From this context, we

recursively call SS to do the rest of the unrolling process. The returned information

is then compounded (using JoinVertical) with the first unrolling attempt and later

compounded (using JoinHorizontal) with the analysis of the exit branch (line 10-

13). Our algorithm can be reduced to linear complexity because these compounded

summarizations of the inner loop(s) can be reused in later iteration of the outer

loop.

We conclude this Section with a correctness statement. The validity of it follows

from the fact that in our framework, in forward computation, we perform only

abstraction, by path merging (similarly, computing the abstract transformer) as

in any abstract interpretation framework. In backward learning, our computed

interpolants are indeed stronger than the corresponding weakest preconditions. This

ensures that every reuse is safe.

Theorem 1 (Soundness). Our symbolic simulation algorithm always produces safe

WCET estimates.

3.7 Implementation Details

3.7.1 Propagating Witnesses

We refer to line 19 in Fig. 3.8. As shown, witness (ω(x̃)) is constructed from the

constraints along the path that gives rise to WCET. Such path can be very long and

naively recording it would be a source of inefficiency. Recall that we use witnesses

to test for feasibility of a solution within memoed function. That is, given a state

s ≡ 〈`, JsK〉 and a witness ω(x̃), we test if JsK ∧ ω(x̃) is satisfiable. In general, the

witness ω(x̃) contains other variables, which are disjoint from the variables of JsK.

However, JsK∧ ω(x̃) is satisfiable iff JsK∧ (∃var(ω) \ var(JsK) • ω(x̃)) is satisfiable.

Therefore, rather than maintaining ω(x̃), we maintain a formula that is equivalent

to ∃var(ω) \ var(JsK) • ω(x̃). CLP(R) projection [Jaffar et al., 1993] is useful here.
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3.7.2 Computing the Abstract Transformer

Let us again refer to Fig. 3.8. The operation in line 17 is similar to the manipulation

of witness paths and we deal with it similarly (by projection). However, operation in

line 26 requires more attention. In fact, we make use of the polyhedral library [Cousot

and Halbwachs, 1978; Verge, 1994] to handle this disjunction, computed as the

convex hull of its components. As a result, we only capture linear input-output

relationships of program variables. Input-output relationships are in general non-

linear. Fortunately, transformations of program variables which affect the flow of

the program are very often just linear and are captured precisely by the polyhedral

domain.

3.7.3 Computing the Interpolants

Refer to the program fragment in the next page. There are 2 infeasible paths of the

program:

〈0〉a = 1 ∧ b = 1 ∧ y = −1〈1〉x < 0〈2〉y′ = a〈4〉y′ ≤ 0〈6〉
〈0〉a = 1 ∧ b = 1 ∧ y = −1〈1〉x ≥ 0〈3〉y′ = b〈4〉y′ ≤ 0〈6〉

〈0〉 a=1,b=1,y=-1;
〈1〉 if (x<0)
〈2〉 y=a;

else
〈3〉 y=b;
〈4〉 if (y>0) 〈5〉 x=1;
〈6〉

By infeasibility, the state at 〈6〉 for the two paths here is false. If we use the notion of

weakest precondition [Dijkstra, 1975] to generalize preceding states for the first path

we get the weakest precondition ¬(∃y′ . x < 0 ∧ y′ = a ∧ y′ ≤ 0) ≡ x < 0 → a > 0

at 〈1〉 for the first path, and ¬(∃y′ . x >= 0 ∧ y′ = b ∧ y′ ≤ 0) ≡ x ≥ 0→ b > 0 for

the second path. Our issue is how to approximate the weakest precondition for a

path efficiently. Both paths share a prefix 〈0〉 〈1〉. The desired weakest precondition
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for 〈1〉, which would maintain the infeasibility of both paths, is the conjunction of

the weakest preconditions of both paths: (x < 0 → a > 0) ∧ (x ≥ 0 → b > 0)

which is a complex formula involving conjunction and disjunction. Combining the

approximations of various paths efficiently is another issue. There are two techniques

in our system.

Using Constraint Deletion: Given the paths as before, we remove all constraints

that are not necessary to ensure infeasibility. To ensure the infeasibility of the first

path, we may remove b = 1, y = −1, and x < 0. For the second path, we may

remove a = 1, y = −1 and x ≥ 0. Here, both paths share the prefix 〈0〉 〈1〉 which

contains a = 1, b = 1, and y = −1. Both paths agree on the removal of y = −1,

hence we remove it, obtaining the state a = 1 ∧ b = 1 at 〈1〉 which generalizes the

original state a = 1∧b = 1∧y = −1, yet not as complex as the weakest precondition

mentioned above.

Using Polyhedral Library: Given a transition relation R(x̃, x̃′) on variables x̃ and

x̃′, where x̃ represents the program variables before the transition and x̃′ represents

the program variables after the transition, and a postcondition Post(x̃′). A weakest

precondition is the formula:

wp(R(x̃, x̃′), Post(x̃′)) ≡ ∀x̃′ •R(x̃, x̃′)→ Post(x̃′)

≡ ¬(¬(∀x̃′ •R(x̃, x̃′)→ Post(x̃′)))

≡ ¬(∃x̃′ •R(x̃, x̃′) ∧ ¬Post(x̃′))

which now can be estimated using projection (pre-image computation). Here we

are only allowed to narrow, but not to widen. We make use of the polyhedral li-

brary to ease this computation. The reason is that the polyhedral library allows

us to represent a Disjunctive Normal Form (DNF) formula as a union of respective

polyhedra. And all the needed operations are closed under this representation (our

native CLP(R) system does not allow us to represent and manipulate disjunctive
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formula directly). The projection to eliminate those variables x̃′ may be an over-

estimation. However, this is safe as the negation of it will be an underestimation

of the weakest precondition. At the end, for efficiency, we only keep a conjunctive

formula.

Return to the same example, the weakest precondition for the first path is (x ≥
0 ∨ a > 0). However, in getting a conjunctive formula as the interpolant, we decide

just to keep a > 0. Similarly, what we will keep for the second path is just b > 0.

As a result, the final interpolant at 〈1〉 will be (a > 0 ∧ b > 0).

We note that precondition propagation using polyhedral library is more expen-

sive and is only performed when needed. This technique is motivated by the fact that

constraint deletion performs badly (much lower chance for reuse) typically when the

guard causing infeasibility purely involves symbolic variables. Unfortunately, most

of the guards for loops are of this type.

3.7.4 Determining Exactness of the Results

In WCET path analysis, it is important to be able to automatically determine whether

the returned bound is exact. In our approach, we only lose some path-sensitivity

due to path merging at the end of each loop iteration. Obviously, our method

produces the exact bound for a single-path program. For a loop-free program, our

method also computes the exact bound. For multi-path programs with loops, our

method has an advantage compared to others that we can easily incorporate the

techniques in [Thakur and Govindarajan, 2008a] into our algorithm. In short, we

initially perform data-flow analysis to determine those control flow merges (called

destructive merges [Thakur and Govindarajan, 2008a]) which may cause loss in the

analysis precision. Then our algorithm can automatically conclude that the returned

bound is exact if the input program contains no destructive merges.
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Benchmark Description #LC

bubblesort Bubble sort program 128
expint Series expansion for computing an exponential integral function 157
fft1 Fast Fourier Transform using the Cooly-Turkey algorithm 219
fir Finite impulse response filter (signal processing algorithms) 276
insertsort Insertion sort program 92
j complex Nested loop program with complex flow 64
ns Search in a multi-dimensional array 535
nsichneu Automatically generated code containing large amounts of if-

statements
2000

ud LU decomposition algorithm 147
amortized A program with amortized loop 41
two shapes A nested loop where the inner loop is executed only on even-th

iteration of outer
20

non deter A nested loop having inner loop’s counter incremented nondeter-
ministically in each iteration (simpler version of Collatz)

20

tcas A traffic collision avoidance system, a real life safety critical em-
bedded system

400

Table 3.1: WCET Benchmark Programs

3.8 Experimental Evaluation

We have selected most difficult benchmark programs (with loops and nested loops)

from the Mälardalen WCET group [Mälardalen, 2006], namely bubblesort, expint,

fft1, fir, insertsort, j complex , ns, nsichneu (part of it), ud. In addition, tcas, a

real life implementation of a safety critical embedded system, is used to illustrate

the performance of our method for the case of big loop-free programs. We also

introduce 3 academic programs, namely amortized, two shapes, non deter to stress

more on complicated behaviors of loops. Benchmark descriptions and sizes are

briefly summarized in Table 3.1.

We used an Intel Core 2 Duo @ 2.93Ghz with 2GB RAM and built our system

upon the CLP(R) [Jaffar et al., 1992] and its native constraint solver. Since the

benchmark programs are of small and moderate sizes, timeout is set at 300 seconds.

As mentioned earlier, the methods in [Lundqvist and Stenström, 1999; Ermedahl
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and Gustafsson, 1997; Gustafsson et al., 2005] are similar to our method with only

the iteration abstraction feature (modulo the abstract domain). To have a better

comparison, both the performances of our full symbolic simulation method (SS) and

its “Iteration Abstraction only” version (IA) are reported in Table 3.2. IA closely

mimics the performance of the methods described in [Lundqvist and Stenström,

1999; Ermedahl and Gustafsson, 1997; Gustafsson et al., 2005], especially in term

of its complexity wrt. the size parameter. In Table 3.2 we refer to IA as the current

state-of-the-art.

In fact, if IA ever returns, its bound will be at least as good as the bound re-

turned by SS. Due to the employment of more accurate abstract domain, IA detects

more infeasible paths compared to [Lundqvist and Stenström, 1999; Ermedahl and

Gustafsson, 1997; Gustafsson et al., 2005] and therefore its bounds will be tighter

than those computed by [Lundqvist and Stenström, 1999; Ermedahl and Gustafs-

son, 1997; Gustafsson et al., 2005]. For each benchmark, IA also visits less states

compared to [Lundqvist and Stenström, 1999; Ermedahl and Gustafsson, 1997;

Gustafsson et al., 2005]. There are certain programs that cannot be handled by

[Lundqvist and Stenström, 1999; Ermedahl and Gustafsson, 1997; Gustafsson et al.,

2005] due to their limited abstract domains, but will be well handled by our IA

(see discussion in [Lundqvist and Stenström, 1999]). Of course, it is expensive to

maintain a more accurate abstract domain. In particular, we expect that, IA ver-

sion might take longer running time compared to [Lundqvist and Stenström, 1999;

Ermedahl and Gustafsson, 1997; Gustafsson et al., 2005] due to calls to the polyhe-

dral library and the underlying theorem prover for checking feasibility.
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For a loop-free program, SS guarantees to produce the exact bound4. For this

kind of program, very importantly, we demonstrate that by using interpolation, we

do not necessitate full enumeration of paths. The performances of SS vs. IA for tcas

illustrate the point.

As shown in Table 3.2, except for j complex , SS achieves the exact timing for

each of the benchmarks - indicated by column Manual. Some of those, current non-

brute-force technique [Prantl et al., 2008] cannot achieve the exact bounds even

for certain loops alone. Except for bubblesort, insertsort, nsichneu, j complex , not

only SS produces the exact bounds but also it can automatically conclude that it

has computed the exact upper bounds - indicated by column Auto - based on the

technique elaborated in Section 3.7.4.

The program j complex , firstly introduced in [Ermedahl and Gustafsson, 1997],

was designed in such a way that, as long as path merging is applied at the end of

the outer loop body, we overestimate its WCET. As expected, SS does not produce

an exact timing for this benchmark, however, the result is still comparable with

the method introduced in [Ermedahl and Gustafsson, 1997; Gustafsson et al., 2005]

(the number of inner loop iterations is estimated at 66). IA, expected to produce

a similar result, however fails because of overflow during a call to the polyhedral

library. This is mainly because, in our implementation, we do not support infinite

precision computation.

On the other hand, nsichneu is a (multi-path) program with a single loop having

a very large body with lots of conditional branches. Its purpose is to test the

scalability of an analyzer. Our algorithm does not finish on full nsichneu program

(about 4000 LOC) due to the heavy workload on the solver for checking infeasible

paths. However, on the attempt to reduce the size of nsichneu, i.e., by reducing the

body of the loop by half, our algorithm then not only runs in good time, it also
4In theory, this is limited by the power of the theorem prover, since the problem of detecting all

infeasible paths is incomplete. However, in practice with CLP(R), we have encountered no problems
regarding this matter.
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computes the exact bound.

SS finishes in less than 20 seconds for every benchmark program. It significantly

outperforms IA in all benchmarks. More importantly, for programs of which a size

parameter exists and can be easily modified as an input variable, the complexity of

our SS is reduced to linear (wrt. the size parameter). In most cases, the number

of states visited by SS is even smaller than the “Actual WCET”, which corresponds

to the maximum number of states in a concrete execution of the program. IA,

therefore methods in [Lundqvist and Stenström, 1999; Ermedahl and Gustafsson,

1997; Gustafsson et al., 2005], clearly do not possess such properties.

3.9 Other Related Work

WCET path analysis has been the subject of much research, and substantial progress

has been made in the area (see [Puschner and Burns, 2000; Wilhelm et al., 2008]

for surveys). Implicit Path Enumeration Technique (IPET) [Li and Malik, 1995] and

its extensions (e.g., [Engblom and Ermedahl, 2000; Ermedahl et al., 2003; Bygde et

al., 2009]) have been widely used due to its efficiency and simplicity. However, pure

IPET methods have problems with infeasible paths and flow information stretching

across loop-nesting levels. However, complex flow facts can be expressed using user-

defined constraints [Engblom and Ermedahl, 2000; Ermedahl et al., 2003], but the

complexity of solving the resulting problem is potentially exponential, since the

program is completely unrolled and all flow information is lifted to a global level.

We note here that, proving the correctness of those constraints is considered as an

orthogonal issue.

Considering infeasible paths to increase the accuracy of WCET path analysis has

attracted a lot of attention in recent years. Nonetheless, all previous works either

perform partial detection of infeasible paths (e.g., using conflict sets) [Healy and

Whalley, 2002; Suhendra et al., 2006] or suffer from full path enumeration [Park,

1993; Altenbernd, 1996; Stappert et al., 2001].
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SATURN [Dillig et al., 2008] and [Reps et al., 1995] are general techniques in

program analysis. Ours is related to them since all are summary-based. However,

those works are path-insensitive (“where precise means meet-over-all-paths” [Reps et

al., 1995]) and cannot be applied to problems which require a high-level of accuracy

such as WCET prediction. In contrast, our work attempts path-sensitivity while

doing loop summarization. The problem we address is fundamentally different, and

much harder.

Our approach poses a commonality with recent CEGAR-based model checking

approaches [Ball et al., 2001; Henzinger et al., 2002] in using interpolation concept

to eliminate irrelevant facts and optimize the search space. In CEGAR, when coverage

happens, a sub-tree can be safely pruned. However, in our case, it only means that

the previously analyzed sub-tree (to be exact, its summarization) can be reused

under a new context. The difference is due to the fact that here we address a

discovery and optimization problem whereas CEGAR works on decision problem. For

instance, as a simpler version of WCET, RCSP (resource-constrained shortest path)

by no means can be easily addressed using CEGAR. Indeed, it has been argued before

that model checking techniques cannot efficiently deal with WCET analysis [Wilhelm,

2004; Lv et al., 2008].

3.10 Summary

We presented a brute-force path analysis method for inferring and proving tight

resource bounds by symbolically simulating loops. The main novelty is first, the

use of interpolation which allows abstract reasoning which in turn makes the search

space manageable; second, the use of witness paths to curtail the use of the said

abstraction in cases where accuracy is likely to be affected; and finally, the use of

compounded summarizations on loop iterations in such a way that the state space

explored by our symbolic simulation can even be smaller than the number of states

in a concrete execution. Using well-known WCET benchmarks, we showed that our
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method performs not just well, but often it obtains exact results.

We have briefly mentioned earlier that our method naturally supports compo-

sitional analysis. However, as shown in Section 3.8, even without it our algorithm

still performs well with benchmarks under the real-time system domain. Exploring

the usefulness of compositionality property for larger programs is left as our future

work.
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Chapter 4

Assertions

Wisdom itself is often an

abstraction associated not with fact

or reality but with the man who

asserts it and the manner of its

assertion.

John Kenneth Galbraith

Programs use limited physical resources. Thus determining an upper bound on

resource usage by a program is often a critical need. Ideally, it should be possible

for an experienced programmer to extrapolate from the source code of a well-written

program to its asymptotic worst-case behavior.

However, “concrete worst-case bounds are particularly necessary in the devel-

opment of embedded systems and hard real-time systems.” [Hoffmann et al., 2011].

A designer of a system wants hardware that is just good enough to safely execute

a given program, in time. As a result, precision is the key requirement in resource

analysis of the program. Now embedded programs are often written in favor of

performance over simplicity or maintainability. This makes many analytical tech-

niques1 [Gulwani and Zuleger, 2010; Hoffmann et al., 2011; Esteban and Genaim,
1 These are more general by the use of parametric bounds, and they discover a closed worst-case

formula. But they are not generally used for concrete analyses.
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2012] less applicable.

Fortunately, there are two important redeeming factors. First, embedded pro-

grams are often of small to medium size (from dozens to a few thousand lines of code)

and symbolically executing them is guaranteed to terminate. Second, programmers

are willing to spend time and effort to help the analyzer in order to achieve more

accurate bounds. In many cases, often such manually given assertions are essential.

As mention before, we deal with the high level aspects of resource analysis.

Architecture modeling, when applicable, is considered as a separate issue and is out

of scope of this work. In other words, we only address the path analysis problem.

Though our path analysis is supposed to work at the level the control flow graphs

(CFG), for better comprehension, all the examples we present are at the source code

level.

The Need for Path-Sensitivity

t = i = 0;
while (i < 10) {

if (i mod 3 == 0)
{ j *= j; t += 30; }

else
{ j++; t += 1; }

i++;
}

Figure 4.1: Need for Path Sensitivity

Precise path analysis essentially arises from path-sensitivity, and this in turn es-

sentially arises from the ability to disregard infeasible paths. But how do we deal

with the subsequent explosion in the search space? In fact, due to loops, fully

path-sensitive algorithms cannot scale. In practice, abstract reasoning with “path-

merging” is used, e.g., [Lundqvist and Stenström, 1999; Ermedahl and Gustafsson,

1997; Gustafsson et al., 2005; Gustafsson et al., 2006].

The example in Fig. 4.1 concerns Worst-Case Execution Time (WCET) analysis,
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or simply timing analysis. The special variable t captures the timing. The program

iterates through a loop, using the counter i. In the iteration such that (i mod 3

== 0), a multiplication is performed, thus requires 30 cycles to finish. Otherwise,

an addition is performed, which takes only 1 cycle to finish. The main challenge

is to discover that multiplications are in fact performed three times less often than

additions. In general, such discoveries are very hard.

An easy solution is to perform loop unrolling. In Fig. 4.1, we start with (t =

0, i = 0). In the first iteration, we detect that the else branch is infeasible. At the

end of this iteration, we have (t = 30, i = 1) (since j does not affect the control

flow, we just ignore information about j). In the second iteration, as (i = 1) we

detect that the then branch is infeasible; from the other branch, we then obtain

(t = 31, i = 2). This process continues until (i = 10), when we exit the loop (having

discovered that multiplication is executed exactly 4 times, and the exact WCET of

126).

In short, by unrolling, we precisely capture the value of the counter i which is

crucial for determining the infeasible paths across the loop iterations. Though the

loop body is executed 10 times, we can capture the fact that the multiplication

operation is executed exactly 4 times. Consequently, the bound on the worst case

timing is precise (for this case, we indeed derive the exact bound).

Clearly a direct implementation of unrolling cannot scale. In Chapter 3, we

developed a fully automated symbolic simulation algorithm which is fully path sen-

sitive wrt. loop-free program fragments. For loops, the algorithm performs loop

unrolling while employing judicious use of path-merging only at the end of each

loop iteration, thus useful information is systematically propagated across loop iter-

ations and between different loops. As already pointed out, loop unrolling is almost

inevitable in order to capture precisely infeasible path information and complicated

loop patterns such as: non-rectangular, amortized, down-sampling, and non-existent

of closed form. As discussed, the main contribution of Chapter 3 is the use of sum-
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marizations with interpolants in determining reuse so that loop unrolling can be

performed efficiently.

Importantly, loop unrolling is observed to have superlinear behavior for the set

of WCET benchmark programs with complicated loops. The key feature that allows

scalability of loop unrolling is not just that a single loop iteration is summarized,

and then subsequent loop iterations are analyzed using this summarization. Rather,

a sequence of consecutive loop iterations can be summarized. Potentially, the whole

loop is efficiently summarized for later reuse. This is crucial for when it matters

most: when loops are nested.

The Need for User Assertions

It is generally accepted in the domain of resource analysis that often programs

do not contain enough information for program path analysis. The reason is that

programs typically accept inputs from the environment, and behave differently for

different inputs. It is just too hard, if not impossible, to automatically extract all

such information for the analyzer to exploit.

t = 0;
for (i = 0; i < 100; i++) {

if (A[i] != 0) {
/* some heavy computation */
t += 1000;

} else { t += 1; }
}

Figure 4.2: Assertions are Essential

Refer to the example in Fig. 4.2, which is also about timing analysis. Each non-zero

element of an array A[] triggers a heavy computation. From the program code, we

can only infer that the number of such heavy computations performed is bounded

by 100. In designing the program, however, the programmers might have additional

knowledge regarding the sparsity of the array A[], e.g., no more than 10 percent of
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A[]’s elements are non-zero. We refer to such user’s knowledge as user assertions.

The ability to make use of such assertions is crucial for tightening the worst case

bound.

In general, a framework — by accommodating assertions — will allow different

path analysis techniques to be combined easily. As path analysis is an extremely

hard problem, we do not expect to have a technique that outperforms all the others

in all realistic programs. Under a framework which accommodates assertions, any

customized path analysis technique can encode its findings in the (allowed) form

of assertions, and simply let the aggregation framework exploit them in yielding

tighter worst-case bounds. Two commercial products for timing analysis [aiT, ;

Bound-T, ] accommodate assertions, giving evidence to their practical importance.

We conclude this subsection by emphasizing that we are not considering the

proof of assertions in this Chapter, though our algorithm is dependent on the cor-

rectness of the assertions. In general, the problem of proving assertions may require

a framework that is more general than what is available. This is because on the one

hand assertions talk about frequency of execution, on the other, the user knowledge

is about the input, and often this is in the form of a complex data structure. In any

case, we regard the proof of validity of assertions as an orthogonal problem.

Path-Sensitivity and Assertions Don’t Mix

We have argued that we need both path sensitivity (up to loops) and assertions in

order to have precision. In this Chapter, we propose a framework for path analysis

in which precise context propagation is achieved by unrolling. In addition, we

instrument the program with frequency variables, each attached to a basic block.

Each frequency variable is initialized to 0 at the beginning of the program and is

incremented by 1 whenever the corresponding basic block is executed. Importantly,

our framework accommodates the use of assertions on frequency variables so that

user information can be explicitly exploited. In other words, the framework not only
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attempts path-sensitivity via loop unrolling as in Chapter 3, but also makes use of

assertions to block more paths, i.e., disregard paths which violate the assertions.

Ultimately, we can tighten the worst-case bounds.

Now because assertions, when they are used, are typically of high importance,

we require our framework to be faithful to assertions. That is, all paths violating the

given assertions are guaranteed to be excluded from bound calculation process. This

requires the framework to be fully path-sensitive wrt. the given assertions. However,

to make loop unrolling scalable, a form of greedy treatment with path merging is

usually employed. In other words, the analysis of a loop iteration must be finished

before we go to the next iteration. Also, the analysis should produce only one single

continuation context2; this context will be used for analysis of subsequent iterations

or subsequent code fragments.

It is here that we have a major conflict: unrolling while ensuring that we recog-

nize blocked paths that arise because of assertions.

c = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}
Figure 4.3: Complying with Assertions in Loop Unrolling is Hard

See Fig. 4.3 where the special variable t captures timing, and “*” is a condition

which cannot be automatically reasoned about, e.g., a call to an external function

prime(i). We also instrument the program with the frequency variable c which is

incremented each time B1 is executed. The assertion assert(c <= 4) constrains

that B1 can be executed at most 4 times.
2We can generalize this to a fixed number of continuation contexts.
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We now exemplify loop unrolling. In the first iteration, we consider the first then

branch, notice t is incremented by 10 so that we get (t = 10, c = 1, i = 1) at the end.

Considering however the else branch, we then detect that the then branch of nested

if-statement is infeasible, thus we finally get (t = 1, c = 0, i = 1). Performing

path-merging to abstract these two formulas, we conclude that this iteration can

consume up to 10 cycles (t = 10) and we continue to the next iteration with the

context (t = 10, c = 0 ∨ c = 1, i = 1)3. Note that by path-merging, we no longer

have the precise information about c, i.e., we say this merge is destructive [Thakur

and Govindarajan, 2008b].

Now there are two options in using the assertion to block invalid paths. They

follow the must and may semantics, respectively.

First, our strategy is to block path with context which must violate the assertion.

However, in our example, due to the destructive merge at the end of each iteration,

no path will be blocked (by the provided assertion). Consequently, we end up having

the worst case timing is 90 cycles: each iteration consumes 10 cycles. Importantly,

the provided assertion cannot be used to tighten the bound.

Second, an alternative is to block path with context which may violate the

assertion. In the first four iterations, the execution of block B1 is possible. From

the fifth iteration onwards, this strategy forbids those paths executing B1. As such,

from the fifth to the tenth iteration, the only feasible path is by following the else

branch of if (i == 1) statement. This leads to the timing of 45 at the end.

At first glance, the second strategy seems to be able to make use of the provided

assertion in order to block paths and tighten the bound. However, such analy-

sis is unsound. A counter-example can be achieved by replacing if (*) with if

(prime(i)), where prime is a function which returns true if the input is actu-

ally a prime number and false otherwise. This counter-example has the timing of

(1 + 5 + 10 + 10 + 1 + 10 + 1 + 10 + 1 = 49).
3To be practical, one must employ some abstract domain for such merge. In our implementation,

we use the polyhedral domain.
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In summary, to be sound while compliant with assertions, our framework is

required to be fully path-sensitive wrt. the variables used in the assertions. The

greedy treatment of loops currently prevents us from being so. In other words, the

challenge is how to address what is in general an intractable combinatorial problem.

Main Contribution

This Chapter proposes the first analysis framework that is path-sensitive while,

at the same time, natively supports user assertions. The famous Implicit Path

Enumeration Technique (IPET) [Li and Malik, 1995] naturally supports assertions; it

is, however, path-insensitive. To obtain precise analysis, the users need to manually

provide information regarding the loop bounds and infeasible paths. On the other

hand, Chapter 3 has shown that path-sensitive analysis with loop unrolling can be

performed efficiently. However, as we have argued, supporting assertions in a loop

unrolling framework is non-trivial.

We address the challenge by presenting an algorithm where the treatment of

each loop is separated in two phases. Scalability, in both phases, is achieved using

the concept of summarization with interpolant. We note here that, as programs

usually contain more than one loop and also nested loops, our two phases are, in

general, intertwined.

The first phase performs a symbolic execution where loops are unrolled effi-

ciently. In order to control the explosion of possible paths, a merge of contexts is

done at the end of every loop iteration. While this is an abstraction, it in general

produces different contexts for different loop iterations. Thus this is the basis for be-

ing path-sensitive up to loops while capturing the non-uniform behavior of different

loop iterations.

Different from Chapter 3, the main objective of our loop unrolling (in the first

phase) is to simplify the tree by eliminating two kinds of paths:

• those that are infeasible (detected from path-sensitivity), and
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• those that are dominated. In more detail, for each collection of paths that

modify the variables used in assertions in the same way, only one path (in

that collection) whose resource usage dominates the rest will be kept in the

summarization.

What results from the first phase is a greatly simplified execution tree. The ex-

plored tree is then compactly represented as a transition system, which also is a

directed acyclic graph (DAG), each edge is labelled with a resource usage and how

the assertion variables are modified.

In the second phase, we are no longer concerned with path-sensitivity of the

original program, but instead are concerned only about assertions. More specifi-

cally, from the produced transition system, we need to disregard all paths violating

the assertions. The problem is thus an instance of the classic Resource Constrained

Shortest Path problem [Joksch, 1966]. While this problem is NP-hard, however, it

has been demonstrated in [Jaffar et al., 2008] that, in general, the use of summa-

rization with interpolant can be very effective.

Finally, we give evidence of this with some practical benchmarks.

4.1 Related Work

The State-of-the-Art: Implicit Path Enumeration

Implicit Path Enumeration Technique (IPET) [Li and Malik, 1995] is the state-of-

the-art for path analysis in the domain of Worst Case Execution Time (WCET)

analysis. IPET formulates the path analysis problem as an optimization problem

over a set of frequency variables each associated with a basic block. More precisely,

it starts with the control flow graph (CFG) of a program, where each node is a basic

block. Program flow is then modeled as an assignment of values to execution count

variables, each centity of them associated with a basic block of the program. The

values reflect the total number of executions of each node for an execution of the



Chapter 4. Assertions 69

program.

Each basic block entity with a count variable (centity) also has a timing variable

(tentity) giving the timing contribution of that part of the program to the total

execution (for each time it is executed). Generally, tentity is derived by some low-level

analysis tool in which micro-architecture is modeled properly. This is an orthogonal

issue and is out of the scope of this work.

The possible program flows given by the structure of the program are modeled

by using structural constraints over the frequency variables. Structural constraints

can be automatically constructed using Kirchhoff’s law. Because these constraints

are quite simple, IPET has to rely on additional constraints, i.e., user assertions, to

differentiate feasible from infeasible program flows. Some constraints are mandatory,

like upper bounds on loops; while others will help tighten the final WCET estimate,

like information on infeasible paths throughout the program. Some examples on

discovering complex program flows and then feed them into IPET framework are

[Engblom and Ermedahl, 2000; Ermedahl et al., 2003].

In the end, the WCET estimate is generated by maximizing, subject to flow

constraints, the sum of the products of the execution counts and execution times:

WCET = maximize(
∑
∀entity

centity · tentity)

This optimization problem is handled using Integer Linear Programming (ILP) tech-

nique. Note that IPET does not find the worst-case execution path but just gives the

worst-case count on each node. There is no information about the precise execution

order.

In comparison with our work in this Chapter, aside from accuracy, we have two

additional important advantages:

• IPET cannot be extended to work for non-cumulative resource analysis such as
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memory high watermark analysis. The reason is that such analysis, even for a

single path, depends on the order in which statements are executed; while in

IPET formulation, such information is abstracted away. We elaborate on this

when discussing Fig. 4.8 below.

• IPET supports only global assertions, whereas we support both global and local

assertions. IPET relies on the intuition that it is relatively easy for program-

mers to provide assertions in order to disregard certain paths from bound

calculation, probably because they are the developers. We partly agree with

this. There is flow information, which can be hard to discover, but the pro-

grammers can be well aware of it, a calculation framework should take into

account such information to tighten the bounds. Nevertheless, we cannot ex-

pect the programmers to know everything about the program. For example,

it is unreasonable to expect the programmer to state about a path which is

infeasible due to a combination of guards scattered throughout the whole pro-

gram. Such global knowledge is hard to deduce and could well be as hard as

the original path analysis problem. In short, it is reasonable to only assume

that the programmers know about some local behavior of a code fragment, not

everything about the global behavior of all the program paths. We elaborate

on this when discussing Fig. 4.7 below.

Symbolic Simulation with Loop Unrolling

In the domain of resource analysis, precision is of paramount importance. Origi-

nally, precision was addressed by symbolic execution with loop unrolling [Lundqvist

and Stenström, 1999; Ermedahl and Gustafsson, 1997; Gustafsson et al., 2005;

Gustafsson et al., 2006]. A loop-unrolling approach which symbolically executes

the program over all permitted inputs is clearly the most accurate. The obvious

challenge is that this is generally not scalable. Thus path-merging, a form of ab-

stract interpretation [Cousot and Cousot, 1977], is introduced to remedy this fact.
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It, in one hand, improves scalability; on the other hand, it seriously hampers the

precision criterion.

The most recent related work is in Chapter 3, also presented in [Chu and Jaffar,

2011], which is a basis of the work in this Chapter. Its main technique to reduce

both the depth and the breadth of the symbolic execution tree is by making use of

compounded summarization. This gives rise to the superlinear behavior of program

with nested loops. That is, the number of states visited in the symbolic execution

tree can be asymptotically smaller than the number of states in a concrete run. As

a result, path-merging is still performed, but now sparsely only at the end of each

loop iteration.

Path-merging has the effect of combining a disjunction of formulas, each rep-

resenting a context obtained from the path, into a single conjunction that is man-

ageable. However, because of this abstraction, exact reasoning is forsook. The

distinction of [Chu and Jaffar, 2011] is that the abstraction is designed to preserve

information that is common through each loop iteration, in contrast with the stan-

dard “loop invariant” approach where the abstraction sought is for information that

is common through all loop iterations.

Parametric Bounds

Static resource analysis concerns with either parametric or concrete bounds. Para-

metric methods, e.g., [Gulwani and Zuleger, 2010; Hoffmann et al., 2011; Esteban

and Genaim, 2012], study the loops, recursions, and data structures, in order to

come up with a closed, easy to understand worst-case formula. These methods are

ideal to algorithmically explain the worst-case complexity of resource usage.

But these methods, in general, do not give precise enough bounds (they con-

cern with asymptotical precision only) and are applicable only to a small class of

programs. For instance, most systems are restricted to linear constraints. Further-

more, they usually focus on an individual loop or loop nest, rather than capture
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the combining effects of loops and conditional statements throughout the program.

Consequently, such techniques alone are mainly used for proving program termina-

tion.

We believe, however, that the advance in producing parametric bounds for com-

plicated loops can indeed support concrete resource analysis, provided that an ag-

gregation framework can make use of assertions.

4.2 Motivating Examples

EXAMPLE 4.1 : See Fig. 4.1. We have shown that loop unrolling produces exact tim-

ing analysis for this example. Here we show how IPET could exploit user assertions

in order to achieve the same. Before proceeding, we mention that this example was

highlighted in [Li and Malik, 1995] to demonstrate the use of assertions in the IPET

framework.

t = i = c = c1 = c2 = 0;
while (i < 10) {

c++;
if (i mod 3 == 0)
{ c1++; j *= j; t += 30; }

else
{ c2++; j++; t += 1; }

i++;
}

Figure 4.4: Assertions in IPET

Now see Fig. 4.4 where frequency variables c, c1, and c2 are instrumented. The

structural constraint prescribed by the IPET method is c = c1 + c2. (In general,

structural constraints are easily extracted from the CFG.) The objective function to

be maximized in the IPET formulation for this example is (c1 ∗ 30 + c2 ∗ 1). In order

to be exact, one could use the assertion c ≤ 10 and c1 ≤ 4. Note that bounding c

(i.e., the assertion c ≤ 10) is mandatory because a bound on the objective function
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depends on this. On the other hand, the assertion c1 ≤ 4 is optional. Computing

the optimal now will produce the exact timing.

This example also exemplifies the fact that IPET is perfectly suited to assertions

simply because one just needs to conjoin the assertions to the structural constraints

before performing the optimization.

EXAMPLE 4.2 : It is certainly not the case that assertions alone are sufficient in

general. Let us now slightly modify Ex. 4.1. We replace j *= j by i *= i. The

new program is shown in Fig. 4.5. Following the unrolling technique, exact bound

is still achieved. The reason is that context propagation is performed precisely.

However, it is now hard for the user of IPET framework to come up with assertions

on frequency variables in order to achieve some good bound. This scenario also

poses a big challenge for many analytical methods [Gulwani and Zuleger, 2010;

Hoffmann et al., 2011; Esteban and Genaim, 2012], due to the non-linear operation

on i, i.e., the statement i *= i;.

t = i = c = c1 = c2 = 0;
while (i < 10) {

c++;
if (i mod 3 == 0)
{ c1++; i *= i; t += 30; }

else
{ c2++; j++; t += 1; }

i++;
}

Figure 4.5: Assertions Alone Are Not Enough

With this example, our purpose is not to refute the usefulness of assertions. In-

stead, we want to further emphasize the ability of an analyzer in propagating flow

information precisely and automatically, i.e., the ability of being path-sensitive.

EXAMPLE 4.3 : Let us refer back to the example in Fig. 4.2. Now our focus is on how

frequency variables and assertions should be instrumented.

First, note that our frequency variables are similar to frequency variables in IPET
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framework. One frequency variable is attached to a distinct basic block. Each is

initialized to 0 at the beginning of the program, and incremented by 1 whenever the

corresponding basic block is executed. An important difference from IPET is that

our frequency variables can be reset. This gives rise to the use of local assertions,

and we elaborate on this below.

Our assertions are predicates over frequency variables and for simplicity, will only

be provided at the end of some loop body or at the end of the program (otherwise

a preprocessing phase is needed).

In Fig. 4.6, the assertion captures the fact that the input array A is a sparse

one: no more 10 percent of its elements are non-zero.

t = c = c1 = 0;
for (i = 0; i < 100; i++) {

c++;
if (A[i] != 0) {

c1++;
t += 1000;

} else { t += 1; }
}
assert(c1 <= c / 10);

Figure 4.6: Assertions Are Essential

EXAMPLE 4.4 : Consider the following “bubblesort” example in Fig. 4.7 where we

have placed a frequency variable c. An integer array a[] of size N > 0 is the input.

Every element of a[] belongs to the integer interval [min,max]. Now, assume that

we know that there are M elements which are equal to max. Consider: how many

times are a pair of elements swapped? We believe this is currently beyond any

systematic approach.

However, it is relatively easy to derive the assertion shown in the inner loop,

representing local reasoning : each swap involves an element which is not equal to

max on the right, therefore after the swap such element would not be visited again
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in the subsequent iterations of the inner loop. Consequently, for each invocation of

the inner loop, the number of swaps is no more than the number of elements which

are not equal to max.

Note that the frequency variable c is reset right before each invocation of the

inner loop. If this were not done, then, to find an alternative assertion to (c <=

N-M) may not be feasible. That is, a global assertion (in this case, to assert that the

total number of increments to c) is in general much harder to discover than a local

one.

for (i = N-1; i >= 1; i--) {
c = 0;
for (j = 0; j <= i-1; j++)

if (a[j] > a[j+1]) {
c++;
tp = a[j]; a[j] = a[j+1]; a[j+1] = tp;
t += 100;

} else { t += 1; }
assert(c <= N-M);

}
}

Figure 4.7: Local Assertions

EXAMPLE 4.5 : Refer to the program in Fig. 4.8 which concerns memory high water-

mark analysis. This is an example of non-cumulative resource usage. The case for

using loop unrolling is particularly clear for such analysis.

The special variable m captures the amount of memory has been consumed.

In memory high watermark analysis, the order in which memory is allocated and

deallocated plays a crucial role in determining a tight bound. Note that the IPET

formulation abstracts away the ordering within a program path, thus this approach

is in fact not appropriate.

The function parity is external, and n is an input variable, so we cannot reason

about the condition parity(n). Performing loop unrolling with path merging at

the end of each iteration, we get the worst case bound of 1010. This corresponds to
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〈1〉 c1 = c2 = 0;
〈2〉 m = 0; /* initially */
〈3〉 m = m + 10; /* malloc statement */
〈4〉 for (i = 0; i < 100; i++) {
〈5〉 if (parity(n)) { /* function call */
〈6〉 c1++;
〈7〉 m = m + 10; /* malloc statement*/

} else {
〈8〉 c2++;
〈9〉 m = m - 10; /* free statement */

}
〈10〉 n++;
〈11〉 assert(|c1 - c2| <= 1);
}

〈12〉

Figure 4.8: Memory High Watermark Analysis

the spurious path that executes the then body of the if-statement in all iterations.

Note that this bound, though extremely imprecise, is indeed safe. However, as a

programmer, the user/certifier might know that the loop will execute alternately the

then and the else bodies (though he does not know which body the first iteration

will execute, due to the unknown value of input n). Therefore, the programmer

can provide the assertion assert(|c1 - c2| <= 1) to guide the reasoning to an

alternating-like behavior of the loop. With this assertion, the returned worst case

high watermark would be as low as 20, instead of 1010.

The given program fragment in general can be put inside an outer loop. The

provided assertion then is correct only for each invocation of the loop at hand. This

again demonstrates the power of our local assertions.

4.3 Preliminaries

Similar to Chapter 3, our programs now include a special variable: the resource

variable r. For simplicity, we start with cumulative resource usage such as time,

power. Thus the purpose of our path analysis is to compute a sound and accurate
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bound for r in the end, across all feasible paths of the program. We note here that

later in Section 4.5.1, we extend our work to support analysis of non-cumulative

resource such as memory, bandwidth.

Also recall our frequency variables are similar to frequency variables in IPET

framework. One frequency variable is attached to a distinct basic block. They are

initialized to 0 at the beginning of the program, and incremented by 1 whenever the

corresponding basic block is executed. An important difference from IPET is that

our frequency variables can be reset, which gives rise to the use of local assertions.

Our assertions are predicates over frequency variables and for simplicity, can be

provided at the end of some loop body, or at the end of the program. A normal

assertion can be easily transformed to an equivalent one which conforms to this

requirement.

Definition 20 (Assertion). An assertion is a tuple 〈`, φ(c̃)〉, where ` is a program

point and φ(c̃) is a set of constraints over the frequency variables c̃.

Definition 21 (Blocked State). Given a feasible state s ≡ 〈`, JsK〉 and an assertion

A = 〈`, φ(c̃)〉, we say state s is blocked by assertion A if JsK∧ φ(c̃) is unsatisfiable.

Definition 22 (Summarization of a Subtree). Given two program points `1 and `2

such that `2 post-dominates `1 and assume we analyze all the paths from entry point

`1 to exit point `2 wrt. an incoming context JsK. The summarization of this subtree

is defined as the tuple [`1, `2,Γ,∆,Ψ], where Γ is the set of representative paths,

abstract transformer ∆ is a binary input-output relation between variables at `1 and

`2, and interpolant Ψ is the condition under which this summarization can be safely

reused.

Computations of ∆ and Ψ are the same as in Chapter 3. Now we explain the

new element, the set of representative paths Γ.

All the feasible paths of the subtree at hand are divided into a number of classes,

each modifying the frequency variables in a distinct way. We are interested in only
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frequency variables which are live at the exit point `2 and will be used later in some

assertion. We call those frequency variables the relevant ones.

Now for each class, only the dominating path — the one with highest resource

consumption — will be kept in Γ. Specifically, each representative path γ ∈ Γ is

of the form 〈r0, δ0(c̃, c̃′)〉, where r0 is the amount of resource consumed in that path

and δ0(c̃, c̃′) captures how frequency variables are modified in that path.

The fact that two representative paths γ1 = 〈r1, δ1(c̃, c̃′)〉 and γ2 = 〈r2, δ2(c̃, c̃′)〉
modify the set of (relevant) frequency variables in the same way is denoted by

δ1(c̃, c̃′)
A≡ δ2(c̃, c̃′) .

For convenience, we repeat the definition for a summarization of a program point

here.

Definition 23 (Summarization of a Program Point). A summarization of a program

point ` is the summarization of all paths from ` to `′ (wrt. the same context), where

`′ is the nearest program point that post-dominates ` s.t. `′ is of the same nesting

level as ` and either is (1) an ending point of the program, or (2) an ending point

of some loop body.

As `′ can always be deduced from `, in the summarization of program `, we

usually omit the component about `′.

4.4 The Algorithm: Overview of the Two Phases

Phase 1: The first phase uses a greedy strategy in the unrolling of loops, Chapter 3.

This unrolling explores a conceptually symbolic execution tree, which is of enormous

size. One main purpose of this phase is to precisely propagate the context across

loop iterations, and therefore disregard as many infeasible paths as possible from

consideration in the second phase.

For each iteration, for all feasible paths discovered, we divide them into a number

of classes. Paths belong to a class modify the frequency variables in the same way.
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Paths from different classes modify the frequency variables in different ways. As an

optimization, we are only interested in frequency variables which will later be used

in some assertion. For each class, only the path with highest resource consumption

is kept, we say that path is the dominating path of the corresponding class. Thus

another purpose of the first phase is to disregard dominated paths from consideration

in the second phase.

From the dominating paths discovered, we now represent compactly this itera-

tion as a set of transitions. This representation is manageable because we can restrict

attention only to the frequency variables used later in some assertion. We continue

this process iteration by iteration. For two different iterations, the infeasible paths

detected in each iteration can be quite different. As a result, their representations

will be different too. At the end of phase 1, we represent the unrolled loop in the

form of a transition system in order to avoid an upfront consideration of the search

space for the whole loop, which can potentially still be exponential.

〈1〉 c = 0, i = 0, t = 0;
〈2〉 while (i < 9) {
〈3〉 if (*) {
〈4〉 if (*) {
〈5〉 c++; t += 10;

} else {
〈6〉 t += 1;

}
} else {

〈7〉 if (i == 1) {
〈8〉 t += 5;

} else {
〈9〉 t += 1;

}
}

〈10〉 i++;
〈11〉 assert(c <= 4);
〈12〉 }
〈13〉

Figure 4.9: Complying with Assertions in Loop Unrolling
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EXAMPLE 4.6 : Consider the program fragment in Fig. 4.9, which is slightly modified

from the example shown in Fig. 4.3 (and now with instrumented program points).

Note that at phase 1, we ignore the assertion at program point 〈11〉, but pay atten-

tion only to its frequency variable c.

We enter the first iteration of the loop. Inside the loop body, we follow the first

feasible path (〈3〉 〈4〉 〈5〉 〈10〉 〈12〉). The value of i at 〈12〉 is 1. When backtracking,

a summarization of program point 〈10〉 is computed as:

[〈10〉, {〈0, c := c〉}, i′ = i+ 1, true]

In other words, the subtree from 〈10〉 to 〈12〉 is summarized by: (1) a representative

path which does not consume any resource and does not modify the assertion variable

c either; (2) an abstract transformer which says that the output value of i is equal

to the input value of i plus 1, (3) an interpolant true which means that any state

at program point 〈10〉 can safely reuse this summarization. Similarly, we derive a

summarization for program point 〈5〉 as:

[〈5〉, {〈10, c := c+1〉}, i′ = i+ 1, true]

The main difference here is that the representative path from 〈5〉 to 〈12〉 consumes 10

units of time and increments the assertion variable c by 1. From 〈4〉, we now follow

the else branch of the second if-statement to reach 〈6〉 and then 〈10〉. At 〈10〉 we

reuse the computed summarization for 〈10〉. The abstract transformer i′ = i+ 1 is

used to produce the continuation context for i at 〈12〉 (i = 1). We then backtrack

and a summarization for 〈6〉 is computed as:

[〈6〉, {〈1, c := c+1〉}, i′ = i+ 1, true]

Thus the combined summarization for 〈4〉 (from 〈5〉 and 〈6〉) is:

[〈4〉, {〈10, c := c+1〉, 〈1, c := c〉}, i′ = i+ 1, true]

Note that this summarization of 〈4〉 contains two representative paths, since there

are two distinct ways in modifying the assertion variable c. From 〈3〉 we now follow

the else branch of the first if-statement. Since i is currently 0, going from 〈7〉 to 〈8〉
(the then branch of the third if-statement) is infeasible. This fact is summarized
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as:

[〈8〉, ∅, false, false]

Following the else branch we reach 〈9〉 and then 〈10〉. At 〈10〉 we reuse and back-

track. The summarization of 〈9〉 is computed as:

[〈9〉, {〈1, c := c〉}, i′ = i+ 1, true]

Thus the combined summarization for 〈7〉 (from 〈8〉 and 〈9〉) is:

[〈7〉, {〈1, c := c〉}, i′ = i+ 1, i 6= 1]

Note how the infeasible paths from 〈7〉 to 〈8〉 affects the interpolant for the sum-

marization at 〈7〉. Now we need to combine the summarizations of 〈4〉 and 〈7〉 to

get a summarization for 〈3〉. We can see that the second representative path in the

summarization of 〈4〉 and the only representative path in the summarization of 〈7〉
both do not modify the frequency variable c and consume 1 unit of time. In other

words, each of them dominates the other. Consequently, we only keep one of them

in the summarization of 〈3〉. The interpolants for 〈4〉 and 〈7〉 are propagated back

(we use precondition computation) and conjoined to give the interpolant for 〈3〉.
The summarization of 〈3〉 wrt. the context of the first iteration of the loop is then:

[〈3〉, {〈10, c := c+1〉, 〈1, c := c〉}, i′ = i+ 1, i 6= 1]

For the first iteration, we add into our new transition system (we omit c := c in the

second transition):

〈〈〈2〉-0〉, c := c+1 ∧ t := t+10, 〈〈2〉-1〉〉
〈〈〈2〉-0〉, t := t+1, 〈〈2〉-1〉〉

The second iteration begins with the context i = 1. At program point 〈3〉, as the

current context does not imply the interpolant i 6= 1 of the existing summarization

for 〈3〉, reuse does not happen. Follow the then branch, we reach program point

〈4〉 and we can reuse the existing summarization of 〈4〉, also produce a continuation

context i = 2 using the abstract transformer i′ = i+1. We then visit program point

〈7〉 where we cannot reuse previous analysis. Different from the first iteration, going
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from 〈7〉 to 〈8〉 is now feasible while going from 〈7〉 to 〈9〉 is infeasible. As a result,

a new summarization for 〈7〉 is computed as:

[〈7〉, {〈5, c := c}〉, i′ = i+ 1, i = 1]

Subsequently, a summarization of 〈3〉 wrt. the context of the second iteration is

computed as:

[〈3〉, {〈10, c := c+1〉, 〈5, c := c}〉, i′ = i+ 1, i = 1]

For the second iteration, we add in the following transitions:

〈〈〈2〉-1〉, c := c+1 ∧ t := t+10, 〈〈2〉-2〉〉
〈〈〈2〉-1〉, t := t+5, 〈〈2〉-2〉〉

Analyses of subsequent iterations reuse the analysis of the first iteration (since the

contexts imply the interpolant i 6= 1). The following transitions — from iteration j

to iteration j + 1, where j = 2..8 — will be added into the new transition system.

Note that we also add the last transition which corresponds to the loop exit.

〈〈〈2〉-2〉, c := c+1 ∧ t := t+10, 〈〈2〉-3〉〉
〈〈〈2〉-2〉, t := t+1, 〈〈2〉-3〉〉
· · ·

〈〈〈2〉-8〉, c := c+1 ∧ t := t+10, 〈〈2〉-9〉〉
〈〈〈2〉-8〉, t := t+1, 〈〈2〉-9〉〉
〈〈〈2〉-9〉, , 〈13〉〉

We note here that the representation of the second iteration is different from the

representations of all other iterations. This arises from the fact that the iterations

of the loop do not behave uniformly. This can only be captured by loop unrolling

while being path-sensitive.

Before proceeding, we first comment that the simplification that phase 1 per-

forms is often very significant. This is essentially because each iteration can exploit

the path-sensitivity that survives through the merges of previous iterations. In gen-

eral, this leads to an exponential decline in the total number of paths in the resulting
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transition system.

Phase 2: In the second phase, we attack the remaining problem, to determine the

longest path in this new transition system, also using the concept of summarization

with interpolant. The key point to note is that only at this second phase, asser-

tions are taken into consideration to block paths. Consequently, paths violating

the assertions will be considered as infeasible, i.e., they are disregarded from bound

calculation.

Let us continue with Ex. 4.6. Consider the transition system from phase 1. We

now need to solve the longest path problem using the initial context (c = 0, t = 0).

The original assertion will be checked at every program point 〈〈2〉-j〉 for j = 1..9.

To be faithful to the given assertion, we must disregard all paths which increment

c more than 4 times from consideration.

In phase 2, our analysis using summarization with interpolant is now performed

on a new transition system which contains no loops. Given the transition system pro-

duced by phase 1, a naive method would require to explore 894 states from 29 paths.

By employing summarizations with interpolants the number of explored states is re-

duced to 56, of which 24 states are reuse states. The effectiveness of summarization

with interpolant for such problem instances has already been demonstrated in [Jaffar

et al., 2008].

Instead of walking through (again) the application of summarization with inter-

polant, we offer some insights as to why phase 2 is often tractable (though the

expanded tree is still quite deep). See Fig. 4.10, where circles denote “reuse” states

and require no further expansion. Note that although the DAG contains exponen-

tially many paths, there are only a few contexts of interest, namely c = α where

0 ≤ α ≤ 9. Therefore, for each node in the DAG there needs only 10 considerations

of paths starting from the node. Thus a straightforward dynamic programming ap-

proach would suffice. However, it is important to note that in general (for example,

more than one frequency variable), the number of different contexts of each node is
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Figure 4.10: Reduced Search Space in Phase 2

exponential. The algorithm we use has the special advantage of using interpolation

so that the dynamic programming effect can be enjoyed by considering not just

the context, but some sophisticated generalization of the context. Essentially, two

contexts can in fact be considered equal if they exhibit the same infeasible/blocked

paths.

4.5 The Algorithm: Technical Description

We start our analyzer by calling function Analyze with the initial state s0 and the

input transition system P. We start phase 1 (line 1) of the analysis and use the

results to build a new transition system G (line 3). The function Build takes as

inputs a set of representative paths Γ0, the transition system P of the original

program, and an initial transition system G. It adds into G a number of transitions,

which correspond the representative paths in Γ0. That new transition system is
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function Analyze(s0,P)
〈1〉 [·,Γ0, ·, ·] := Summarize(s0,P, 1)
〈2〉 G := ∅
〈3〉 G := Build(Γ0,P,G)
〈4〉 [·,Γ, ·, ·] := Summarize(s0,G, 2)
〈5〉 return FindMax(Γ)

function Summarize(s,P, phase)
Let s be 〈`, JsK〉

〈6〉 if (JsK ≡ false) return [`, ∅, false, false]
〈7〉 if (outgoing(`,P) ≡ ∅) return [`, {〈0, Id(c̃)〉}, Id(Vars), true]
〈8〉 if (loop end(`,P)) return [`, {〈0, Id(c̃)〉}, Id(Vars), true]
〈9〉 S := memoed(s)
〈10〉 if (S 6≡ false) return S
〈11〉 if (phase ≡ 2) /* Consider assertions at phase 2 */
〈12〉 if (∃ A ≡ 〈`, φ〉 and JsK ∧ φ ≡ false) return [`, ∅, false,¬φ]
〈13〉 if (phase ≡ 1 ∧ loop entry(`,P))
〈14〉 si := s
〈15〉 G := ∅
〈16〉 [·,Γ1,∆1, ·] := TransStep(si,P, entry(`,P), 1)
〈17〉 while (Γ1 6≡ ∅)
〈18〉 G := Build(Γ1,P,G)
〈19〉 [·,Γ2, ·, ·] := TransStep(si,P, exit(`,P), 1)
〈20〉 if (Γ2 6≡ ∅) G := Build(Γ2,P,G)

〈21〉 si
∆1−−→ s′

i /* Execute abstract transition ∆1 */
〈22〉 si := s′

i

〈23〉 [·,Γ1,∆1, ·] := TransStep(si,P, entry(`,P), 1)
endwhile

〈24〉 [·,Γ2, ·, ·] := TransStep(si,P, exit(`,P), 1)
〈25〉 G := Build(Γ2,P,G)
〈26〉 S := Summarize(s,G, 2) /* Phase 2 */
〈27〉 else S := TransStep(s,P, outgoing(`,P), phase)
〈28〉 if (phase ≡ 2) S := Modification of S

taking into account the information computed in phase 1
〈29〉 else S := S
〈30〉 memo and return S

Figure 4.11: Two-phase Symbolic Simulation Algorithm

then returned. We have demonstrated this process in Section 4.4.

We proceed to phase 2 with this new transition system, G, as in line 4. The

worst case bound is then achieved by looking for the maximum value in all returned

solution paths Γ (line 5).

Our key function, Summarize, takes as inputs a symbolic state s ≡ 〈`, JsK〉, a
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transition system, and a flag indicating which phase it is in. It then performs the

analysis using the context JsK and returns the summarization for the program point

` as in Def. 23 in Section 4.3.

Base Cases: Summarize handles 4 base cases. First, when the symbolic state s

is infeasible (line 6), no execution needs to be considered. Note that here path-

sensitivity plays a role since only provably executable paths will be considered.

Second, s is a terminal state (line 7). Here Id refers to the identity function, which

keep the values of variables unchanged. Ending point of a loop is treated similarly

in the third base case (line 8). The last base case, lines 9- 10, is the case that a

summarization can be reused. We have demonstrated this step, with examples, in

Section 4.4.

Expanding to next Program Points: Line 27 depicts the case when transitions

can be taken from current program point `, and ` is not a loop starting point. Here

we call TransStep to move recursively to next program points. TransStep implements

the traversal of transition steps emanating from `, denoted by outgoing(`,P), by

calling Summarize recursively and then compounds the returned summarizations into

a summarization of `. The inputs of TransStep are symbolic state s, the transition

system P, a set of outgoing transitions TransSet to be explored, and the current

phase the algorithm is in.

For each t in TransSet , TransStep extends the current state with the transition.

Resulting child state is then given as an argument in a recursive call to Summarize

(line 34). From each summarization of a child returned by the call to Summarize,

the algorithm computes a component summarization, contributed by that particular

child to the parent as in lines 35-39. All of such components will be compounded

using the JoinHorizontal function (line 40).

Note that the interpolant for the child state is propagated back to its parent

using the precondition operation pre, where pre(t,Ψ) denotes the precondition of

the postcondition Ψ wrt. the transition t. In an ideal case, we would want this
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function TransStep(s,P,TransSet , phase)
Let s be 〈`, JsK〉

〈31〉 S := [`, ∅, false, true]
〈32〉 foreach (t ∈ TransSet ∧ t contains r := r+α) do
〈33〉 s

t−−→ s′

〈34〉 [`′,Γ,∆,Ψ] := Summarize(s′,P, phase)
〈35〉 Γ′ := ∅
〈36〉 foreach (〈r1, δ1〉 ∈ Γ) do
〈37〉 one := {〈r1 + α, combine(t, δ1)〉}
〈38〉 Γ′ := Merge Paths(Γ′, one)

endfor
〈39〉 S := [`,Γ′, combine(t,∆), pre(t,Ψ)]
〈40〉 S := JoinHorizontal(S,S)

endfor
〈41〉 return S

operation to return the weakest precondition. But in general that could be too

expensive. Discussions on possible implementations of this operator can be found

at [Rybalchenko and Sofronie-Stokkermans, 2007; Chu and Jaffar, 2011]. In our

implementation using CLP(R) [Jaffar et al., 1992], the combine function simply

conjoins the corresponding constraints and performs projections to reduce the size

of the formula.

Loop Handling: Lines 13-26 handle the case when the current program point `

is the loop entry point. Let entry(`,P) denote the set of transitions going into the

body of the loop, and exit(`,P) denote the set of transitions exiting the loop.

Upon encountering a loop, our algorithm attempts to unroll it once by calling

the function TransStep to explore the entry transitions (line 16). When the returned

set of representative paths is empty, it means that we cannot go into the loop body

anymore, we thus proceed to the exit transitions (lines 24-25). Otherwise, if some

feasible paths are found by going into the loop body, we first use the returned set of

representative paths Γ1 to add new transitions into our transition system G (line 18).

Next we use the returned abstract transformer to produce a new continuation con-
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text (lines 21-22), so that we can continue the analysis with the next iteration. Here

we assume that this unrolling process will eventually terminate. However, since we

are performing symbolic execution, it is possible that at some iterations both the

entry transitions and exit transitions are feasible. Lines 19-20 accommodate this

fact.

Phase 2: In phase 2, we now make use of assertions, to block paths. This is achieved

at lines 11-12. Note that the negation of the assertion will be the interpolant for

the current state and this interpolant will be propagated backward.

The summarization of a program point ` at phase 2 will be modified, as in

line 28. The abstract transformer of this summarization is the one computed in

phase 1. However, the interpolant is combined by conjoining the interpolant of that

program point already computed in phase 1 to the current interpolant in phase

2. This is because an interpolant of a node comes from two sources. The first is

due the infeasible paths detected in phase 1, while the second is due to the blocked

paths detected in phase 2. We note here that, for simplicity, we purposely omit the

details in phase 1 on how summarizations are vertically combined, so as to produce

a serialization of summarization for the loop entry point. See Chapter 3 for details.

Merge Paths and JoinHorizontal: Function Merge Paths simply merges two sets

of paths into one. As mentioned before, for each distinct way of changing the

frequency variables which are relevant to some assertions used later, we only keep

the dominating path and ignore all the dominated paths.

Given two subtrees T1 and T2 which are siblings and the inputs S1 and S2 summa-

rize T1 and T2 respectively. JoinHorizontal is then used to produce the summarization

of the compounded subtree T of both T1 and T2. Here the representative paths are

merged (line 52). Preserving all infeasible/blocked paths in T requires preserving

infeasible/blocked paths in both T1 and T2 (line 54). The input-output relationship

of T is safely abstracted as the disjunction of the input-output relationships of T1

and T2 respectively (line 53). In our implementation, this corresponds to the convex
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function Merge Paths(Γ1,Γ2)
〈42〉 Γ := Γ1

〈43〉 foreach (γ2 :=〈r2, δ2(c̃, c̃′)〉 ∈ Γ2) do
〈44〉 status := true
〈45〉 foreach ( γ1 :=〈r1, δ1(c̃, c̃′)〉 ∈ Γ) do

〈46〉 if ( δ1(c̃, c̃′)
A≡ δ2(c̃, c̃′))

〈47〉 status := false
〈48〉 if (r2 > r1) replace γ1 in Γ by γ2

〈49〉 break /* Out of the inner loop */
endfor

〈50〉 if (status) add γ2 into Γ
endfor

〈51〉 return Γ
function JoinHorizontal(S1, S2)

Let S1 be [`,Γ1,∆1,Ψ1]
Let S2 be [`,Γ2,∆2,Ψ2]

〈52〉 Γ := Merge Paths(Γ1,Γ2)
〈53〉 ∆ := ∆1 ∨ ∆2 /* Merge two abstract transformers */
〈54〉 Ψ := Ψ1 ∧ Ψ2 /* Conjoin two interpolants */
〈55〉 return [`,Γ,∆,Ψ]

hull operator of the polyhedral domain.

4.5.1 Extension to Non-Cumulative Resource Analysis

As our framework is path-based, to extend it to work with non-cumulative resource

is relatively easy. For non-cumulative resource, we need to capture not only the

net usage but also the high watermark usage of that resource. For each class which

modifies the frequency variables in an distinct way, we now consider dominating

value not only in term of the net usage, but also in term of high watermark usage.

Consequently, for each of such class, a representative path is chosen (γ ∈ Γ),

and is now of the form 〈rn, rh, δ(c̃, c̃′)〉, where δ(c̃, c̃′), as before, captures how that

class modifies the set of (relevant) frequency variables, rn is the highest net amount

of resource consumed in that class, rh is the highest spike in term of high watermark

observed by that class.
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EXAMPLE 4.7 : Let us have a look at the following example, where m captures the

amount of consumed memory. This code fragment contains no frequency variables.

〈1〉 if (*) { m += 100; m -= 90; }
else { m += 40; m -=10; } 〈2〉

Now the first path (then branch) leads to an increase of 10 for the net memory

usage while the second path (else branch) leads to an increase of 30. On the other

hand, the first path leads to a spike of 100 in term of the high watermark usage

while the second path gives rise to a spike of 40 only. As such, in summarizing this

block, Γ will be {〈30, 100, Id(c̃)〉}. Id(c̃) captures the fact that this class (of paths)

does not change any frequency variable. Note that the two worst-case values came

from different concrete paths. The compact representation for this code fragment

would be 〈〈1〉, spike(100),m := m+30, 〈2〉〉.
Here we extend the notation for a transition to include also predicate spike(100),

which indicates the fact that from program point 〈1〉 there is a spike of 100 in term

of the memory high watermark. If in some context, we come to the same program

point 〈1〉 with a net memory usage of 20, this will lead an observation of 120 in the

memory high watermark. Note also that the value for a spike is always non-negative,

a free statement would give a spike of 0. This is observed right before executing

the free statement. However, that free statement would give a negative amount

in term of change in memory net usage.

The modification of our algorithm is quite intuitive, therefore, we will be brief

and only show the key changes in the TransStep function in order to accommodate

the newly introduced component rh of each representative path. See Fig. 4.12. As

we now work with non-cumulative resource, the amount of change in net memory

usage can be negative, i.e., α < 0. Also we assume all original transitions (coming

directly from the program input) contain the predicate spike(0).

We now briefly illustrate on the memory high watermark example (Ex. 4.5)

presented earlier in Fig. 4.8.
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function TransStep(s,P,TransSet , phase)
Let s be 〈`, JsK〉

〈56〉 S := [`, ∅, false, true]
〈57〉 foreach (t ∈ TransSet ∧ t contains r := r+α and spike(β)) do
〈58〉 s

t−−→ s′

〈59〉 [`′,Γ,∆,Ψ] := Summarize(s′,P, phase)
〈60〉 Γ′ := ∅
〈61〉 foreach (〈rn, rh, δ〉 ∈ Γ) do
〈62〉 one := {〈rn + α,max (spike(β), rh + α), combine(t, δ)〉}
〈63〉 Γ′ := Merge Paths(Γ′, one)

endfor
〈64〉 S := [`,Γ′, combine(t,∆), pre(t,Ψ)]
〈65〉 S := JoinHorizontal(S, S)

endfor
〈66〉 return S

Figure 4.12: TransStep for Non-Cumulative Resource

EXAMPLE 4.8 : Recall that as we cannot automatically reason about the external

function parity, in all the loop iterations, both available paths are deemed as feasi-

ble. However, they modify the frequency variables c1 and c2 differently. Specifically,

the first path increments c1 and does not change c2; while the second path does not

change c1 and increments c2. Also note that both c1 and c2 are used in the provided

assertion.

Consequently, in the first phase, for each iteration, both paths are kept in build-

ing the new transition system. Similar to Ex. 4.6, at the end of the first phase,

we build a new transition system as below. Note that this loop is executed for 100

iterations, and the last transition corresponds to the exit of the loop.

〈〈〈4〉-0〉, spike(10), c1 := c1+1 ∧m := m+10, 〈〈4〉-1〉〉
〈〈〈4〉-0〉, spike(0), c2 := c2+1 ∧m := m−10, 〈〈4〉-1〉〉

. . .

〈〈〈4〉-99〉, spike(10), c1 := c1+1 ∧m := m+10, 〈〈4〉-100〉〉
〈〈〈4〉-99〉, spike(0), c2 := c2+1 ∧m := m−10, 〈〈4〉-100〉〉
〈〈〈4〉-100〉, spike(0), , 〈12〉〉
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We start phase 2 on this new transition system, using the initial context (m =

10, c1 = 0, c2 = 0). Our provided assertion, assert(|c1 - c2| <= 1) will be

checked at every program point 〈〈4〉-j〉, for j = 1..100. Making use of the assertion,

at the end of phase 2, the representative path computed for program point 〈〈4〉-0〉
(using new TransStep function) is 〈0, 10, c1 := c1+50 ∧ c2 := c2+50〉. It means that

there is a maximum spike of 10 and the change in net memory usage of the whole

loop is 0. As we start with (m = 10, c1 = 0, c2 = 0) at 〈〈4〉-0〉, 20 is the bound for

the memory high watermark. Note that, however, all the non-blocked paths end up

having the net memory usage of 10 at the end of the loop.

4.5.2 Correctness Statements

We conclude this Section with two statements. The first says that the analysis

produced by the algorithm is correct over all execution traces that satisfy the asser-

tions. The second says that given a program, global assertions (frequency variables

not reset), and that we are pursuing a cumulative analysis, our algorithm is better

than the classic IPET algorithm. Briefly, this is because the only component of our

algorithm which is lossy is in phase 1, and here we suffer only from the possible

inclusion of some infeasible path satisfying the assertions. Such a path cannot be

excluded by the IPET method.

Theorem 2. The algorithm is sound wrt. assertions.

Theorem 3. The algorithm is uniformly better than the IPET algorithm.

4.6 Experimental Evaluation

We used a 2.93Gz Intel processor and 2GB RAM. Our prototype is built upon

CLP(R)[Jaffar et al., 1992] and its native constraint solver.

The programs used for evaluation are: (1) academic examples presented in this

Chapter; (2) benchmarks from Mälardalen WCET group [Mälardalen, 2006], which
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Benchmark LOC Path-Sensitive Path-Insensitive
(IPET)

w.o. Assertions w. Assertions w.o. As w. As
Bound T(s) Bound T(s)

sparse array (Ex-4.3) < 100 110404 1.50 10404 3.48 110404 10404
bubblesort100 (Ex-4.4) < 100 515398 5.52 49798 11.45 1019902 1019902
watermark (Ex-4.5) < 100 1010 1.74 20 5.45 * *
conflict100 (Ex-4.6) < 100 1504 3.47 759 9.22 1504 1129
insertsort100 < 100 515794 4.91 30802 7.78 1020804 1020804
crc 128 1404 7.73 1084 8.61 1404 1084
expint 157 15709 4.40 859 4.56 - -
matmult100 163 3080505 4.55 131705 5.54 3080505 131705
fir 276 1129 2.35 793 2.39 - -
fft64 219 7933 5.52 1733 6.04 - -
tcas 400 159 3.84 81 3.9 172 94
statemate 1276 2103 9.65 1103 9.73 2271 1271
nsichneu small 2334 483 9.43 383 9.51 2559 2459

Table 4.1: Experiments with and without Assertions

are often used for evaluations of WCET path analysis techniques; and (3) a real traffic

collision avoidance system tcas. Their corresponding sizes (LOC) are given in the

second column of Table 4.1. Note that only watermark (Ex-4.5) is about memory

high-watermark analysis, the rest are about WCET analysis.

Table 4.1 shows the experimental results. We evaluate the effects of assertions

in our path-sensitive framework as well as in IPET, a path-insensitive framework.

We remark that IPET is the current state-of-the-art in WCET path analysis and is

used in most available WCET tools (e.g., [aiT, ]).

The last two columns are about IPET. Recall that IPET always requires assertions

on loop bounds in order to produce an answer. For programs where such information

can be easily extracted from the code, we provide IPET such loop bounds. Loop

bounds which must be dynamically computed (e.g., from unrolling) are not provided

to IPET. As a result, IPET cannot produce bounds for some programs, indicated as

‘-’. For programs where IPET can successfully bound, IPET running time is always

less than 1 second, so we do not tabulate those timings individually. IPET cannot
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handle memory high-watermark analysis, therefore it cannot handle Ex-4.5. This

is indicated as ‘*’.

The third and fourth columns show the bounds and running times using our

unrolling framework without employing assertions. These results correspond to the

results produced by the algorithm in Chapter 3, which is representative for the

state-of-the-arts in loop unrolling. On the other hand, the fifth and sixth columns

report the performance of the algorithm proposed in this Chapter, possessing path-

sensitivity as well as being compliant with assertions. As expected, our algorithm

produces the best bounds for all instances. Importantly, for most programs, it

achieves more precise bounds which neither path-sensitivity alone nor user assertions

alone can achieve.

Our algorithm scales well, even for programs with (nested) loops and of prac-

tical sizes. This is due to the use of compounded summarizations. From a close

investigation, we see that our algorithm preserves the superlinear behavior observed

in Chapter 3. Also, the cost of complying with assertions, i.e., the cost of phase 2,

depends mainly on the assertions and the maximum number of iterations for the

loop where the assertions are used. Such cost does not depend on the size of the

input program, nor the size of the overall symbolic execution tree.

We also note that the cost for phase 2 in the watermark program is relatively

high due to the use of our powerful interpolation method (precondition propagation),

but in this case, does not give more reuse/reduction than a naive one. Addressing

this issue is about balancing between different interpolation methods, and is out of

scope of this work.

In summary, we have repeated on earlier experiments in Chapter 3 to demon-

strate the superiority of having path-sensitivity, not considering assertions. Then

we considered assertions, and demonstrated two things. Foremost is that our two-

phase algorithm, which is new, can scale to practical sized programs. We also

demonstrated along the way that assertions can influence the resource analysis in a
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significant way.

4.7 Summary

We considered the problem of symbolic simulation of programs, where loops are

unrolled, in the pursuit of resource analysis. A main requirement is that assertions

may be used to limit the possible execution traces. The first phase of the algorithm

performed symbolic simulation without consideration of assertions. From this, a

skeletal transition system — which now only concerns the assertions, and is much

simpler than the system corresponding to the original program — is produced. The

second phase now determines the worst-case path in this simplified transition system.

While this problem is an instance of an NP-hard problem (RCSP), we argue that the

instances arising from assertions in program analysis lend itself to efficient solution

using a dynamic programming plus interpolation approach. Finally, benchmarks

clearly show that the algorithm can scale.
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Part II

Safety Verification of Concurrent

Programs
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Chapter 5

Combining State Interpolation and

Partial Order Reduction

All I’m going to tell you is

investigations, whether it be this

and others, where you have partial

facts, analysts, agents are always

trying to interpret what those facts

mean, extrapolate from them what

they mean.

Robert Mueller

We consider the state explosion problem in safety verification of concurrent pro-

grams. This is caused by the interleavings of transitions from different processes.

In explicit-state model checking, a general approach to counter this explosion is

Partial Order Reduction (POR) (e.g., [Valmari, 1991; Godefroid, 1996]). This ex-

ploits the equivalence of interleavings of “independent” transitions: two transitions

are independent if their consecutive occurrences in a trace can be swapped without

changing the final state. In other words, POR-related methods prune away redun-

dant process interleavings in a sense that, for each Mazurkiewicz [Mazurkiewicz,
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1986] trace equivalence class of interleavings, if a representative has been checked,

the remaining ones are regarded as redundant.

On the other hand, symbolic execution [King, 1976] is another method for pro-

gram reasoning which recently has made increasing impact on software engineering

research [Cadar et al., 2011]. The main challenge for symbolic execution is the ex-

ponential number of symbolic paths. The works [Jaffar et al., 2009; McMillan, 2010;

Jaffar et al., 2011] tackle successfully this fundamental problem by eliminating from

the concrete model, on-the-fly, those facts which are irrelevant or too-specific for

proving the unreachability of the error nodes. This learning phase consists of com-

puting state-based interpolants in a similar spirit to that of conflict clause learning

in SAT solvers.

Now symbolic execution with state interpolation (SI) has been shown to be ef-

fective for verifying sequential programs. In SI [Jaffar et al., 2009; McMillan, 2010;

Jaffar et al., 2011], a node at program point ` in the reachability tree can be pruned,

if its context is subsumed by the interpolant computed earlier for the same program

point `. Therefore, even in the best case scenario, the number of states explored by

a SI method must still be at least the number of all distinct program points1. How-

ever, in the setting of concurrent programs, exploring each distinct global program

point2 once might already be considered prohibitive. In short, symbolic execution

with SI alone is not efficient enough for the verification of concurrent programs.

Recent work [Yang et al., 2008] has shown the usefulness of going stateful in

implementing a POR method. It directly follows that SI can help to yield even

better performance. In order to implement an efficient stateful algorithm, we are

required to come up with an abstraction for each (concrete or symbolic) state.

Unsurprisingly, SI often offers us good abstractions.
1Whereas POR-related methods do not suffer from this. Here we assume that the input concur-

rent program has already been preprocessed (e.g., by static slicing to remove irrelevant transitions,
or by static block encodings) to reduce the size of the transition system for each process.

2The number of global points is the product of the numbers of local program points in all
processes.
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The above suggests that POR and SI can be very much complementary to each

other. In this Chapter, we propose a general framework employing symbolic execu-

tion in the exploration of the state space, while both POR and SI are exploited for

pruning. SI and POR are combined synergistically as the concept of interpolation.

Interpolation is essentially a form of learning where the completed search of a safe

subtree is then formulated as a recipe, ideally a succinct formula, for future pruning.

The key distinction of our interpolation framework is that each recipe discovered by

a node is forced to be conveyed back to its ancestors, which gives rise to pruning of

larger subtrees.

In summary, we address the challenge: “combining classic POR methods with

symbolic technique has proven to be difficult” [Kahlon et al., 2009]. More specifi-

cally, we propose an algorithm schema to combine synergistically state interpolation

with POR so that the sum is more than its parts. However, we first need to formalize

POR wrt. a symbolic search framework with abstraction in such a way that: (1)

POR can be property driven and (2) POR, or more precisely, the concept of persistent

set, can be applicable for a set of states (rather than an individual state). While

the main contribution is a theoretical framework, we also indicate a potential for

the development of advanced implementations.

5.1 Related Work

Partial Order Reduction (POR) is a well-investigated technique in model checking

of concurrent systems. Some notable early works are [Valmari, 1991; Godefroid,

1996]. Later refinements of POR, Dynamic [Flanagan and Godefroid, 2005] and

Cartesian [Gueta et al., 2007] POR (DPOR and CPOR respectively) improve tradi-

tional POR techniques by detecting collisions on-the-fly. These methods can, in

general, achieve better reduction due to the more accurate detection of independent

transitions.

One important weakness of traditional POR is that it is insensitive wrt. a target
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safety property. In contrast, recent works have shown that property-aware reduc-

tion can be achieved by symbolic methods using a general-purpose SAT/SMT solver

[Wang et al., 2008b; Kahlon et al., 2009; Wang et al., 2009; Cordeiro and Fischer,

2011]. Verification is often encoded as a formula which is satisfiable iff there exists

an interleaving execution of the programs that violates the property. Reductions

happen inside the SAT solver through the addition of learned clauses derived by

conflict analysis [Silva and Sakallah, 1996]. This type of reduction is similar to what

we call state interpolation (SI).

The most relevant related work is [Kahlon et al., 2009], which is the first to

consider a combination of the POR and SMT. Subsequently, there was a follow-up

work [Wang et al., 2009].

In [Kahlon et al., 2009], they began with an SMT encoding of the underlying

transition system, and then they enhance this encoding with a concept of “mono-

tonicity”. The effect of this is that traces can be grouped into equivalence classes,

and in each class, all traces which are not monotonic will be considered as unsatisfi-

able by the SMT solver. The idea of course is that such traces are in fact redundant.

This work has demonstrated some promising results as most concurrency bugs in

real applications have been found to be shallow.

However, there is a fundamental problem with scalability in [Kahlon et al., 2009],

as mentioned in the follow-up work [Wang et al., 2009]: “It will not scale to the

entire concurrent program” if we encode the whole search space as a single formula

and submit it to an SMT solver.

Before describing [Wang et al., 2009], we compare [Kahlon et al., 2009] with our

work. Essentially, the difference is twofold. First, in this Chapter, the theory for

partial order reduction is property driven. In contrast, the monotonicity reduction

of [Kahlon et al., 2009] is not. We specifically exemplify the power of property

driven POR in the later sections. Second, the encoding in [Kahlon et al., 2009] is

processed by a black-box SMT solver. Thus important algorithmic refinements are
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not possible. Some examples:

• There are different options in implementing SI. Specifically in this work, we

employ “precondition” computations. Using black-box solver, one has to rely

on its fixed interpolation methods.

• Our approach is lazy in a sense that our solver is only required to consider one

symbolic path at a time; in [Kahlon et al., 2009] it is not the case. This matters

most when the program is unsafe and finding counter-examples is relatively

easy (there are many traces which violate the safety).

• In having a symbolic execution framework, one can direct the search process.

This is useful since the order in which state interpolants are generated does

give rise to different reductions. Of course, such manipulation of the search

process is hard, if not impossible, when using a black-box solver.

In order to remedy the scalability issue of [Kahlon et al., 2009], the work [Wang et

al., 2009] proposed a concurrent trace program (CTP) framework which employs

both concrete execution and symbolic solving to strike balance between efficiency

and scalability of SMT-based method. This approach is more appropriate for testing

than for verification. The new direction of [Wang et al., 2009], in avoiding the blow-

up of the SMT solver, was in fact preceded by the work on under-approximation

widening (UW) [Grumberg et al., 2005]. As with CTP, UW models a subset, which

will be incrementally enlarged, of all the possible interleavings as an SMT formula

and submits it to an SMT solver. In UW the scheduling decisions are also encoded as

constraints, so that the unsatisfiable core returned by the solver can then be used to

further the search in probably a useful direction. This is the major contribution of

UW. However, an important point is that this furthering of the search is a repeated

call to the solver, this time with a weaker formula; which means that the problem

at hand is now larger, having more traces to consider. On this repeated call, the

work done for the original call is thus duplicated.
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At first glance, it seems attractive and simple to encode the problem compactly

as a set of constraints and delegate the search process to a general-purpose SMT

solver. However, there are some fundamental disadvantages, and these arise mainly

because it is thus hard to exploit the semantics of the program to direct the search

inside the solver. This is fact evidenced in the related works mentioned above.

We believe, however, the foremost disadvantage of using a general-purpose solver

lies in the encoding of process interleavings. For instance, even when a concurrent

program has only one feasible execution trace, the encoding formula being fed to the

solver is still of enormous size and can easily choke up the solver. More importantly,

different from safety verification of sequential programs, the encoding of interleavings

(e.g., [Kahlon et al., 2009] uses the variable sel to model which process is selected

for executing) often hampers the normal derivations of succinct conflict clauses by

means of resolution. We empirically demonstrate the inefficiency of such approach

in Sec. 5.7.

There have been other recent approaches addressing safety verification of concur-

rent programs. To name a few: [Gupta et al., 2011] is based on CEGAR technology,

[Albarghouthi et al., 2010] is based on symbolic execution, while [Sinha and Wang,

2010; Sinha and Wang, 2011] are based on SMT. However, they digress from the

POR family since they do not deal with the concept of swapping transitions.

5.2 Background and Discussions

We consider a concurrent system composed of a finite number of threads or processes

performing atomic operations on shared variables. Let Pi (1 ≤ i ≤ n) be a process

with the set transi of transitions. Assume that transi contains no cycles. Even

though loops are important in concurrent systems, for simplicity, we ignore them

(because loop-free programs are sufficient to exhibit our main contributions and

routine techniques, e.g., as from [Jaffar et al., 2011], can always be employed to

handle loops).
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We also assume all processes have disjoint sets of transitions. Let T = ∪ni=1transi

be the set of all transitions. Let Vi be the set of local variables of process Pi, and

Vshared the set of shared variables of the given concurrent program. Let pci ∈
Vi be a special variable representing the process program counter, and the tuple

〈pc1, pc2 · · · , pcn〉 represent the global program point. As before, let SymStates be

the set of all global symbolic states of the given program where s0 ∈ SymStates is

the initial state. A state s ∈ SymStates comprises two parts: its global program

point `, also denoted by pc(s), which now is a tuple of local program counters, and

its symbolic constraint JsK over the program variables. In other words, we denote a

state s by 〈pc(s), JsK〉.
We consider the transitions of states induced by the program. Following [Gode-

froid, 1996], we only pay attention to visible transitions. A (visible) transition t{i}

pertains to some process Pi. It transfers process Pi from control location `1 to `2.

Recall that the application of t{i} will execute an operation op and we denote tran-

sition t{i} by `1
op−−→ `2. At some state s ∈ SymStates, when the ith component of

pc(s), namely pc(s)[i], equals `1, we say that t{i} is schedulable3 at s. And when

s satisfies the guard cond, denoted by s |= cond, we say that t{i} is enabled at

s. For each state s, let Schedulable(s) and Enabled(s) denote the set of transi-

tions which respectively are schedulable at s and enabled at s. A state s, where

Schedulable(s) = ∅, is called a terminal state.

Let s t→ s′ denote transition step from s to s′ via transition t. This step is

possible only if t is schedulable at s. The effect of applying a transition t on a

feasible state s to arrive at state s′ is the same as in Chapter 2. However, for

technical reasons needed below, we shall allow schedulable transitions emanating

from an infeasible state; it follows that the destination state must also be infeasible.

EXAMPLE 5.1 : Consider two processes P1, P2: P1 simply awaits for x = 0, while P2

increments x. So each has one transition to transfer (locally) from control location
3This concept is not standard in traditional POR, we need it here since we are dealing with

symbolic search.
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〈0〉 to 〈1〉. Assume that initially x = 0, i.e., the initial state s0 is 〈〈0,0〉, x = 0〉. Run-

ning P2 first we have the transition from state 〈〈0,0〉, x = 0〉 to state 〈〈0,1〉, x = 1〉.
From here, we note that the transition from P1 is now not enabled even though it is

schedulable. If applied, it produces an infeasible (and terminal) state 〈〈1,1〉, x = 1 ∧ 1 = 0〉.
Note that (x = 1 ∧ 1 = 0) ≡ false.

On the other hand, running P1 first, we have the transition from 〈〈0,0〉, x = 0〉
to 〈〈1,0〉, x = 0〉. We may now have a subsequent transition step to 〈〈1,1〉, x = 1〉,
which is a feasible terminal state.

For a sequence of transitions w (i.e., w ∈ T ∗), Rng(w) denotes the set of tran-

sitions that appear in w. Also let T` denote the set of all transitions which are

schedulable somewhere after global program point `. We note here that the schedu-

lability of a transition at some state s only depends on the program point component

of s, namely pc(s). It does not depend on the constraint component of s, namely

JsK. Given t1, t2 ∈ T we say t1 can de-schedule t2 iff there exists a state s such

that both t1, t2 are schedulable at s but t2 is not schedulable after the execution of

t1 from s.

Following the above, s1
t1···tm=⇒ sm+1 denotes a sequence of state transitions, and

as before, we say that sm+1 is reachable from s1. We call s1
t1→ s2

t2→ · · · tm→ sm+1 a

feasible derivation from state s1, iff ∀ 1 ≤ i ≤ m• ti is enabled at si. As mentioned

earlier, an infeasible derivation results in an infeasible state (an infeasible state is

still aware of its global program point). An infeasible state satisfies any safety

property.

We define a complete execution trace, or simply trace, ρ as a sequence of transi-

tions such that it is a derivation from s0 and s0
ρ

=⇒ sf and sf is a terminal state.

A trace is infeasible if it is an infeasible derivation from s0. If a trace is infeasible,

then at some point, it takes a transition which is schedulable but is not enabled.

From thereon, the subsequent states are infeasible states.

We follow the same definition for safety as in Chapter 2. In other words, the
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given concurrent system is safe wrt. a safety property ψ if ∀s ∈ SymStates • if s is

reachable from the initial state s0 then s |= ψ. A trace ρ is safe wrt. ψ, denoted as

ρ |= ψ, if all its states satisfy ψ.

Partial Order Reduction

POR methods exploit the fact that paths often differ only in execution order of

non-interacting or “independent” transitions. This notion of independence between

transitions can be formalized by the following definitions [Godefroid, 1996]. Note

here that traditional POR can only accommodate concrete states.

Definition 24 (Independence Relation). A symmetric relation R ⊆ T × T is an

independence relation iff for each 〈t1, t2〉 ∈ R the following properties hold for

every state s:

1. if t1 is enabled in s and s t1→ s′, then t2 is enabled in s iff t2 is enabled in s′

; and

2. if t1 and t2 are enabled in s, then there is a unique state s′′ such that s t1t2=⇒ s′′

and s t2t1=⇒ s′′.

Definition 25 (Equivalence). Two traces are (Mazurkiewicz) equivalent iff one

trace can be transformed into another by repeatedly swapping adjacent independent

transitions.

Traditional algorithms employ the concept of trace equivalence for pruning.

They operate as classic state space searches except that, at each encountered state

s, they compute the subset T of the transitions enabled at s, and explore only the

transitions in T . Intuitively, a subset T of the set of transitions enabled in a state s

is called persistent in s if whatever one does from s, while remaining outside of T ,

does not interact with T . Formally, we have the following:

Definition 26 (Persistent). A set T ⊆ T of transitions enabled in a state s is

persistent in s iff, for all feasible derivations s t1→ s1
t2→ s2 . . .

tm−1→ sm−1
tm→ sm



Chapter 5. Combining State Interpolation and Partial Order Reduction 106

including only transitions ti ∈ T and ti 6∈ T , 1 ≤ i ≤ m, ti is independent with all

the transitions in T .

Discussion

Now let us briefly illustrate the application of POR and SI to a simple example. We

purposely make the example concrete, i.e., states are indeed concrete so that POR

becomes applicable. This allows us to draw comparisons between POR and SI.

EXAMPLE 5.2 (Closely coupled processes): See Fig. 5.1. Program points are shown in

angle brackets. Fig. 5.1(a) shows the control flow graphs of two processes. Process

1 increments x twice whereas process 2 doubles x twice. The transitions associated

with such actions and the safety property are depicted in the figure. POR requires a

full search tree while Fig. 5.1(b) shows the search space explored by SI. Interpolants

are in curly brackets. Bold circles denote pruned/subsumed states.

Let us first attempt this example using POR. It is clear that t{1}1 is dependent

with both t{2}1 and t{2}2 . Also t{1}2 is dependent with both t{2}1 and t{2}2 . Indeed, each

of all the 6 execution traces in the search tree ends at a different concrete state. As

classic POR methods use the concept of trace equivalence for pruning, no interleaving

is avoided: those methods will enumerate the full search tree of 19 states (for space

reason, we omit it here).

Revisit the example using SI, where we use the weakest preconditions [Dijkstra, 1975]

as the state interpolants: the interpolant for a state is computed as the weakest

precondition to ensure that the state itself as well as all of its descendants are safe

(see Fig. 5.1(b)). We in fact achieve the best case scenario with it: whenever we come

to a program point which has been examined before, subsumption happens. The

number of non-subsumed states is still of order O(k2) (where k = 3 in this particular

example), assuming that we generalize the number of local program points for each

process to O(k). Fig. 5.1(b) shows 9 non-subsumed states and 4 subsumed states.

In summary, the above example shows that SI might outperform POR when
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Figure 5.1: Application of SI on 2 Closely Coupled Processes

the component processes are closely coupled. However, one can easily devise an

example where the component processes do not interfere with each other at all.

Under such condition POR will require only one trace to prove safety, while SI is still

(lower) bounded by the total number of global program points. In this Chapter, we

contribute by proposing a framework to combine SI and POR synergistically.

5.3 State Interpolation Revisited

See Fig. 5.2. From s0, by following one particular feasible sequence θ1, we reach

state si which is at global program point `. Let W` denote the set of all possible

suffix traces starting from program point `. For a sequence w ∈ W`, w may be a

feasible or infeasible derivation from si.

We assume that the subtree A rooted at si has been explored and proved safe

wrt. property ψ. The question now is: in subsequent (depth-first) traversal via θ2

we reach state sj which is also at the program point `, can we avoid considering the

subtree at sj , namely subtree A′? If so, we consider this scenario as state pruning.
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Figure 5.2: State Pruning

We now make the following definition which is crucial for the concept of pruning

and will be used throughout this Chapter.

Definition 27 (Trace coverage). Let ρ1, ρ2 be two traces of a concurrent system.

We say ρ1 covers ρ2 wrt. a safety property ψ, denoted as ρ1 wψ ρ2, iff ρ1 |= ψ →
ρ2 |= ψ.

One way to determine whether si covers sj , i.e., state coverage, is to make use of

the trace coverage concept. We can conclude that si covers sj if ∀w ∈ W` • θ1w wψ
θ2w. This seems elegant as it takes care of both feasible and infeasible traces.

However, for some w ∈ W`, if θ1w is infeasible, i.e., at some point a symbolic

infeasible state is reached, this trace will trivially satisfy ψ from that point on. It

is then hard to ensure the safety of θ2w without exploring the subtree rooted at sj .

Instead, as in previous Chapters, during the exploration of subtree rooted at si ≡
〈`, JsiK〉 we also compute a state-interpolant of si, denoted as SI(`, ψ), where SI(`, ψ)

ensures that for all state sj ≡ 〈`, JsjK〉 if JsjK |= SI(`, ψ) then ∀t ∈ Schedulable(si)4

the two following conditions must be satisfied:

• if t was disabled at si, it also must be disabled at sj
4Note that Schedulable(si) = Schedulable(sj).
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• if t is a enabled at sj (by the above condition, t must be enabled at si too)

and sj
t→ s′j and si

t→ s′i, then s′i must cover s′j .

This observation enables us to compute the interpolants recursively. We do employ

this idea for the state interpolation component of the synergy algorithm in Section

5.5.

5.4 Property Driven POR

“Combining classic POR methods with symbolic algorithms has been proven to be

difficult” [Kahlon et al., 2009]. The fundamental reason is that the concepts of

(Mazurkiewicz) equivalence and transition independence, which drive all POR tech-

niques, rely on the equivalence of two concrete states. However, in symbolic traver-

sal, we rarely encounter two equivalent symbolic states.

It is even more difficult extending POR to be property driven. The difficulty

arises from the fact that symbolic methods implicitly manipulate large sets of states

as opposed to states individually. Capturing and exploiting transitions which are

dynamically “independent” with respect to a set of states is thus much harder.

Let us next discuss about the traditional concept of transition independence.

Here we ignore the matter of enablement and disablement of transitions. In order

for two transitions t1 and t2 to be independent, it is required that for all state s in

the state space, there is a unique state s′ such that s t1t2=⇒ s′ and s
t2t1=⇒ s′. Indeed,

this requirement for the uniqueness of s′, which in general is not satisfied in symbolic

setting, hinders the extension of POR to symbolic techniques.

See Fig. 5.3. Assume that we have finished examining the subtree A, resulting

from taking transition t1 at state si. Now the question again is whether we can avoid

those subtrees resulting from not taking t1. Do we really need t1 to be independent

with those transitions appearing in the suffix subtree (in A)? In fact, the question

becomes whether t1 can commute forward over each of such transitions so that it
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Figure 5.3: Branch Pruning

can blend in freely with those suffixes without affecting the safety. For example,

we do not require t2 to be able to commute forward over t1 safely in order for the

branch by taking transition t2 to be pruned. Indeed, t2, until executed, must still be

schedulable in A (if not, we definitely cannot prune). In other words, in the traces

ending at A, t1 is always taken before t2. Informally, the swapping is required to be

one-way only.

Instead of using the concept of trace equivalence, from now on, we only make

use of the concept of trace coverage. The concept of trace coverage is definitely

weaker than the concept of Mazurkiewicz equivalence. In fact, if ρ1 and ρ2 are

(Mazurkiewicz) equivalent then ∀ψ • ρ1 wψ ρ2 ∧ ρ2 wψ ρ1. Now we will define

a new and weaker concept which therefore generalizes the concept of transition

independence.

Definition 28 (Semi-Commutative After A State). For a given concurrent program,

a safety property ψ, and a derivation s0
θ=⇒ s, for all t1, t2 ∈ T which cannot de-

schedule each other, we say t1 semi-commutes with t2 after state s wrt. wψ, denoted

by 〈s, t1 ↑ t2, ψ〉, iff for all w1, w2 ∈ T ∗ such that θw1t1t2w2 and θw1t2t1w2 are

execution traces of the program, then we have θw1t1t2w2 wψ θw1t2t1w2.
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From the definition, Rng(θ), Rng(w1), and Rng(w2) are pairwise disjoint. Im-

portantly, if s is at program point `, we have Rng(w1)∪Rng(w2) ⊆ T` \{t1, t2}. We

observe that wrt. some ψ, if all important events, those have to do with the safety

of the system, have already happened in the prefix θ, the “semi-commutative” re-

lation is trivially satisfied. On the other hand, the remaining transitions might still

interfere with each other (but not the safety), and do not satisfy the independent

relation.

The concept of “semi-commutative” is obviously weaker than the concept of

independence. If t1 and t2 are independent, it follows that ∀ψ ∀s • 〈s, t1 ↑ t2, ψ〉 ∧
〈s, t2 ↑ t1, ψ〉. Also note that, in contrast to the relation of transition independence,

but similar to the concept of weak stubborn [Valmari, 1991], the “semi-commutative”

relation is not symmetric.

We now introduce a new definition for persistent set.

Definition 29 (Persistent Set Of A State). A set T ⊆ T of transitions enabled in

a state s ∈ SymStates is persistent in s wrt. a property ψ iff, for all derivations

s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only transitions ti ∈ T and ti 6∈ T, 1 ≤
i ≤ m, each transition in T semi-commutes with ti after s wrt. wψ.

With the new definition of persistent set, we now can proceed with the normal

selective search as described in classic POR techniques. In the algorithm presented in

Fig. 5.4, we perform depth first search (DFS). For each state, computing a good per-

sistent set from the “semi-commutative” relation is not a trivial task. Fortunately,

the task is similar to computing the classical persistent set under the transition

independence relation. The algorithms for this task can be found elsewhere (e.g.,

[Godefroid, 1996]).

Lemma 1. The selective search algorithm in Fig. 5.4 is sound.

Proof Outline. Assume that there exist some traces which violate the property ψ

and are not examined by our selective search. Let denote the set of such traces as
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Safety property ψ and initial state s0
〈1〉 Initially : Explore(s0)
function Explore(s)
〈2〉 if s 6|= ψ

Report Error and TERMINATE
〈3〉 T := Persistent Set(s)
〈4〉 foreach t in T do
〈5〉 s

t−−→ s′ /* Execute t */
〈6〉 Explore(s′)
〈7〉 endfor
end function

Figure 5.4: New Persistent-Set Selective Search (DFS)

Wviolated. For each trace ρ = s0
t1→ s1

t2→ s2 · · · tm→ sm, ρ ∈ Wviolated, let first(ρ)

denote the smallest index i such that ti is not in the persistent set of si−1. Without

loss of generality, assume ρmax = s0
t1→ s1

t2→ s2 · · · tm→ sm having the maximum

first(ρ). Let i = first(ρmax) < m. As the “commuter” and “commutee” cannot

“de-schedule” each other, in the set {ti+1 · · · tm} there must be a transition which

belongs to the persistent set of si−1 (otherwise, the must exist some transition that

belongs to the persistent set of si−1 which is schedulable at sm. Therefore sm is not a

terminal state). Let j be the smallest index such that tj belongs to the persistent set of

si−1. By definition, wrt. wψ and after si−1, tj semi-commutes with ti, ti+1, · · · tj−1.

Also due to the definition of the “semi-commutative” relation we deduce that all the

following traces (by making tj repeatedly commute backward):

ρ′1 = t1t2 · · · ti−1titi+1 · · · tjtj−1tj+1 · · · tm
...

ρ′j−i−1 = t1t2 · · · ti−1titjti+1 · · · tj−1tj+1 · · · tm

ρ′j−i = t1t2 · · · ti−1tjtiti+1 · · · tj−1tj+1 · · · tm
must violate the property ψ too. However, first(ρ′j−i) > first(ρmax). This contra-

dicts the definition of ρmax.

In preparing for POR and SI to work together, we now further modify the concept
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of persistent set so that it applies for a set of states sharing the same program point.

The previous definitions apply for a specific state only.

Definition 30 (Semi-Commutative After A Program Point). For a given concurrent

program, a safety property ψ, and t1, t2 ∈ T , we say t1 semi-commutes with t2 after

program point ` wrt. wψ and φ, denoted as 〈`, φ, t1 ↑ t2, ψ〉, iff for all state

s ≡ 〈`, ·〉 reachable from the initial state s0, if s |= φ then t1 semi-commutes with t2

after state s wrt. wψ.

Definition 31 (Persistent Set Of A Program Point). A set T ⊆ T of transitions

schedulable at program point ` is persistent at ` under the interpolant Ψ wrt. a

property ψ iff, for all state s ≡ 〈`, ·〉 reachable from the initial state s0, if s |= Ψ

then for all derivations s t1→ s1
t2→ s2 . . .

tm−1→ sm−1
tm→ sm including only transitions

ti ∈ T and ti 6∈ T, 1 ≤ i ≤ m, each transition in T semi-commutes with ti after state

s wrt. wψ.

Assume that T = {tp1, tp2, · · · tpk}. The interpolant Ψ can now be computed as

Ψ =
∧
φji for 1 ≤ j ≤ k, 1 ≤ i ≤ m such that 〈`, φji, tpj ↑ ti, ψ〉.

For each program point, it is possible to have different persistent sets associated

with different interpolants accordingly. In general, a state which satisfies a stronger

interpolant will have a smaller persistent set, and therefore, it enjoys more pruning.

5.4.1 Approximating the “semi-commutative” relation

In previous parts, we have defined the concepts of trace coverage and “semi-commutative”,

which give rise to traditional selective search, thus exploit property driven pruning.

To further relate these concepts to some practical implementation, we will hint

out one possible way to approximate the “semi-commutative” relation, using state

interpolation and precondition propagation.

Assume that we have at hand property ψ and two transitions t1, t2 ∈ T`. We now

want to decide whether t1 can semi-commute with t2 after program point ` and wrt.

wψ. In fact, we pose the question as “with which φ we can have 〈`, φ, t1 ↑ t2, ψ〉”.
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Abusing notation, for each program point ` and a set of suffix tracesW starting

from `, i.e., W ⊆ W`, let SI(W, ψ)5 denote the state interpolant such that for all

state s ∈ SymStates, s is at program point `, if s |= SI(W, ψ) then all the derivations

from s using the suffices in W are safe wrt. ψ. We also denote SI(W, ψ) as the

interpolant such that if s |= SI(W, ψ), all the corresponding derivations are unsafe.

Note that SI(W, ψ) |= SI(W,¬ψ).

If W contains suffix traces starting from different program point, we define

SI(W, ψ) as
∧
i=1..m SI(Wi, ψ) where W1 · · ·Wm are partitions of W such that each

set contains only suffices starting from the same program point. SI(W, ψ) is defined

similarly.

Now we can proceed by finding φ1 and φ2 such that:

φ1 = SI({t1t2w2|Rng(w2) ⊆ T` \ {t1, t2}}, ψ)

φ2 = SI({t2t1w2|Rng(w2) ⊆ T` \ {t1, t2}}, ψ)

We adopt a “Hoare triple” [Hoare, 1969] notation here. We need to find φ such that

for all possible sequences w1, Rng(w1) ⊆ T` \ {t1, t2}, we have {φ}w1{φ1 ∨ φ2}.
Assume we reach state s at program point ` through a prefix θ and s |= φ.

We then have ∀w1 • s w1=⇒ s1 implies s1 |= φ1 ∨ φ2. If it is unsafe before reaching

s1, trace coverage is trivially satisfied. Otherwise, s1 |= φ1 ∨ φ2 implies that s1 |=
φ1 ∨ s1 |= φ2. If s1 |= φ1 then ∀w2 : θw1t1t2w2 must be unsafe, and therefore

∀w2 • θw1t1t2w2 wψ θw1t2t1w2. Similarly, if s1 |= φ2 then ∀w2 • θw1t2t1w2 must be

safe. Again we derive that ∀w2 • θw1t1t2w2 wψ θw1t2t1w2.

5.5 Synergy of SI and PDPOR

We now show our combined framework. We assume for each program point, a

persistent set and its associated interpolant are to be computed statically, i.e., by
5Note that with a proper W, information about ` can always be inferred.
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separate analyses. In other words, when we are at a program point, we can right

away make use of the information about its persistent set.

The algorithm is in Fig. 5.5. The function Explore has input s0 and assumes the

safety property at hand is ψ. It naturally performs a depth first search of the state

space.

Assume safety property ψ and initial state s0
〈1〉 Initially : Explore(s0)

function Explore(s)
Let s be 〈`, ·〉

〈2〉 if (memoed(s,Ψ)) return Ψ
〈3〉 if (s 6|= ψ) Report Error and TERMINATE
〈4〉 Ψ := ψ

〈5〉 〈T,Ψtrace〉 := Persistent Set(`)
〈6〉 if (s |= Ψtrace)
〈7〉 Ts := T

〈8〉 Ψ := Ψ ∧ Ψtrace

〈9〉 else Ts := Schedulable(s)
〈10〉 foreach t in (Ts \ Enabled(s)) do
〈11〉 Ψ := Ψ ∧ pre(t, false)
〈12〉 endfor
〈13〉 foreach t in (Ts ∩ Enabled(s)) do
〈14〉 s

t−−→ s′ /* Execute t */
〈15〉 Ψ′ := Explore(s′)
〈16〉 Ψ := Ψ ∧ pre(t,Ψ′)
〈17〉 endfor
〈18〉 memo and return (Ψ)
end function

Figure 5.5: Algorithm Schema: A Framework for SI and POR (DFS)

Two Base Cases: The function Explore handles two base cases. One is when the

current state is subsumed by some computed (and memoed) interpolant Ψ. No

further exploration is needed, and Ψ is returned as the interpolant (line 2). The

second base case is when the current state is found to be unsafe (line 3).

Combining Interpolants: We make use of the (static) persistent set T computed

for the current program point. We will further comment on this in the next section.
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Figure 5.6: Inductive Correctness

The set of transitions to be considered is denoted by Ts. When the current state

implies the interpolant Ψtrace associated with T , we need to consider only those

transitions in T . Otherwise, we need to consider all the schedulable transitions. Note

that when the persistent set T is employed, the interpolant Ψtrace must contribute

to the combined interpolant of the current state (line 8). Disabled transitions (to be

considered) at the current state will strengthen the interpolant as in line 11. Finally,

we recursively (and selectively) follow those transitions which are enabled at the

current state. The interpolant of each child state contributes to the interpolant of

the current state as in line 16. In our framework, interpolants are propagated back

using the precondition operation pre, where pre(t, φ) denotes a safe approximation

of the weakest precondition wrt. the transition t and the postcondition φ [Dijkstra,

1975].

Theorem 4. The synergy algorithm in Fig. 5.5 is sound.

Proof Outline. We use structural induction. Refer to Fig. 5.6. Assume that from

s0 we reach state si ≡ 〈`, ·〉. W.l.o.g., assume that at si there are three transitions

which are schedulable, namely t1, t2, t3, of which only t1 and t2 are enabled. Also

assume that under the interpolant Ψ2, the persistent set of `, and therefore of si,

is just {t1}. From the algorithm, we will extend si with t1 (line 14) and attempt
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to verify the subtree A (line 15). Our induction hypothesis is that we have finished

considering A, and indeed, it is safe under the interpolant ΨA. That subtree will

contribute Ψ1 = pre(t1,ΨA) (line 16) to the interpolant of si.

Using the interpolant Ψ2, the branch having transition t2 followed by the subtree

B is pruned and that is safe, due to Lemma 1. Also, the disabled transition t3

contributes Ψ3 (line 11) to the interpolant of si. Now we need to prove that Ψ =

Ψ1 ∧Ψ2 ∧Ψ3 is indeed a sound interpolant for program point `.

Assume that subsequently in the search, we reach some state sj ≡ 〈`, ·〉. We will

prove that Ψ is a sound interpolant of ` by proving that if sj |= Ψ, then the pruning

of sj is safe.

First, sj |= Ψ implies that sj |= Ψ3. Therefore, at sj, t3 is also disabled. Second,

assume that t1 is enabled at sj and sj
t1−−→ sj+1 (if not the pruning of t1 followed

by A′ is definitely safe). Similarly, sj |= Ψ implies that sj |= Ψ1. Consequently,

sj+1 |= ΨA and therefore the subtree A′ is safe too. Lastly, sj |= Ψ implies that

sj |= Ψ2. Thus the reasons which ensure that the traces ending with subtree A cover

the traces ending with subtree B also hold at sj. That is, the traces ending with

subtree A′ also cover the traces ending with subtree B′.

〈0〉

〈1〉

t3 : y = x

Process 3

〈0〉

〈1〉

t2 : x = x ∗ 2

Process 2

〈0〉

〈1〉

t1 : x+ +

Process 1

Shared variables: x, y

Initially: x = 0, y = 0

Safety: ψ ≡ y ≤ 2

Figure 5.7: Two Producers and One Consumer

EXAMPLE 5.3 (Two Producers and One Consumer): Fig. 5.7 shows the control flow

graphs of three processes, which mimics the scenario of having two producers and one
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t1 t2 t3

t2 t3 t1 t3 t1 t2

t3 t2 t3 t1 t2 t1

t1 : x + +
t2 : x = x ∗ 2
t3 : y = x

Figure 5.8: The Full Execution Tree

consumer in a concurrent system. Process 1 produces the value of shared variable x

by incrementing it, while process 2 produces the value of x by doubling it. Process

3 consumes the value of x by assigning its value to y.

Pairwise, the processes interfere with each other. However, once the consumer

has consumed the data, the producers no longer interfere with the correctness of

the overall system. The safety property and relevant transitions are depicted in the

figure. Although this example is very simple, it illustrates one of the most common

(and general) type of data races in concurrent programs.

The full interleavings of the execution tree is shown in Fig. 5.8. The program is

safe wrt. specified safety property ψ. POR (and DPOR)-only methods will enumerate

the full execution tree which contains 16 states and 6 complete execution traces.

Any technique which employs only the notion of Mazurkiewicz trace equivalence for

pruning will have to consider at least 5 complete traces (due to 5 different terminal

states). SI alone can reduce some states in this example; however, it will still explore

at least 3 complete traces (and some partial traces of course). Symbolic methods

as in [Grumberg et al., 2005; Wang et al., 2009] also will not perform well with this
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Figure 5.9: The Search Tree using Static Synergy Algorithm

example if we also consider the search space generated by solver.

Now we follow the algorithm described in Fig. 5.5. Fig. 5.9 illustrates the ex-

plored search space wrt. the following static knowledge (note that ψ ≡ y ≤ 2):

〈〈0,0,0〉, true, t1 ↑ t3, ψ〉 (5.1)

〈〈0,0,0〉, true, t2 ↑ t3, ψ〉 (5.2)

〈〈1,0,0〉, true, t2 ↑ t3, ψ〉 (5.3)

〈〈0,1,0〉, true, t1 ↑ t3, ψ〉 (5.4)

Consider Fig. 5.9. At state s0 of program point 〈0,0,0〉 we have 〈〈0,0,0〉, true, t2 ↑ t3, ψ〉
and 〈〈0,0,0〉, true, t1 ↑ t3, ψ〉. Here we do not know whether t1 can semi-commute

with t2 after program point 〈0,0,0〉 under some condition. So we decide that the per-

sistent set of 〈0,0,0〉 is {t1, t2} under the trace-interpolant Ψ〈0,0,0〉 ≡ true ∧ true ≡
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true. Obviously s0 |= Ψ〈0,0,0〉, and as such the persistent set of s0 is {t1, t2}.
Now assume that we follow t1 reaching state s1 at program point 〈1,0,0〉. Now

in s1 we have x = 1, y = 0. Now since 〈〈1,0,0〉, true, t2 ↑ t3, ψ〉, we decide that

the persistent set of 〈1,0,0〉 is {t2} under the trace-interpolant Ψ〈1,0,0〉 ≡ true.

Obviously s1 |= Ψ〈1,0,0〉, and as such the persistent set of s1 is {t2}.
Next we follow t2 reaching program point 〈1,1,0〉 having x = 2, y = 0. Then

we follow t3 to complete a trace, reaching program point 〈1,1,1〉 with x = 2, y =

2. We backtrack and compute the interpolant for program point 〈1,1,0〉 which is

〈〈1,1,0〉, x ≤ 2 ∧ y ≤ 2〉. We continue to backtrack and compute the interpolant for

program point 〈1,0,0〉 to be x ≤ 1 ∧ y ≤ 2 ∧ true ≡ x ≤ 1 ∧ y ≤ 2. Note that

x ≤ 1 is contributed by the propagation of the interpolant of 〈1,1,0〉, whereas true

is contributed by the interpolant Ψ〈1,0,0〉. Here the interleaving of t3 from s1 has

been pruned due to the use of an interpolant.

Again, we backtrack to s0 and continue the exploration with the transition t2 (in

the persistent set of s0). Now we follow t2 reaching state s2 at program point 〈0,1,0〉,
having x = 0, y = 0. At this program point we make use of 〈〈0,1,0〉, true, t1 ↑ t3, ψ〉.
So we decide that the persistent set of 〈0,1,0〉 is {t1} under the trace-interpolant

Ψ〈0,1,0〉 ≡ true. Obviously s2 |= Ψ〈0,1,0〉, as such the persistent set of s2 is {t1}.
Next from s2 we follow the only transition in its persistent set, which is t1,

reaching the state s3 at program point 〈1,1,0〉, having x = 1, y = 0. However,

the program point 〈1,1,0〉 has been explored and proved safe with the interpolant

x ≤ 2 ∧ y ≤ 2. As s3 |= x ≤ 2 ∧ y ≤ 2, this state is then pruned.

In summary, at s0, s1, s2, PDPOR helps to prune out transition t3 whereas state

interpolation helps us avoid the further exploration of s3.

Let us try to go deeper in the process of discovering the “semi-commutative”

relation. Using the law of algebra, that ∀x • x ∗ 2 + 1 ≤ (x + 1) ∗ 2, we can easily

prove the facts mentioned above, namely (5.1), (5.2), (5.3), and (5.4).

Now let us explore the method discussed in Section 5.4.1. For instance, consider
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(5.1) which is 〈〈0,0,0〉, true, t1 ↑ t3, ψ〉. Let w1, w2 be sequences such that w1t1t3w2

and w1t3t1w2 are possible suffix traces from program point 〈0,0,0〉. We know that

Rng(w1) and Rng(w2) are disjoint and Rng(w1) ∪Rng(w2) = {t2}. As t2 does not

modify the value of y, we can deduce that Rng(w2) contains no transition that can

affect the safety property ψ ≡ y ≤ 2 after t3 had already executed. We have:

φ1 = SI({x++; y = x;w2}, ψ) ≡ x > 1 ∨ y > 2 and

φ2 = SI({y = x;x++;w2}, ψ) ≡ x ≤ 2 ∧ y ≤ 2.

Then φ1 ∨ φ2 ≡ true. As ∀φ • {φ}w1{true}, we can just use φ = true and achieve

〈〈0,0,0〉, true, t1 ↑ t3, ψ〉.
We discover (5.2) in a similar manner. Furthermore, (5.3) (5.4) are easy to

deduce as T〈0,1,0〉 \ {t1, t3} = ∅ and T〈1,0,0〉 \ {t2, t3} = ∅.
With the above example, we have demonstrated: (1) How the search space is

explored by the synergy algorithm; and (2) How we can approximate the “semi-

commutative” relation. One can also observe that our technique is incremental.

Even when we cannot decide the “semi-commutative” relation for some transitions,

the search space is still manageable. Moreover, though at the current state a tran-

sition cannot be pruned (by our PDPOR), there is still lots of potential for pruning

at subsequent states and branches, by both SI and PDPOR.

5.6 Implementation of PDPOR

The challenge of implementing our proposed theory is essentially how to obtain a

good estimate of the semi-commutative relation. Similarly to the traditional POR,

the definitions are of paramount importance for the semantic use. In practice,

however, one has to come up with sufficient conditions to efficiently implement the

concepts. In our case, we estimate the semi-commutative relation in two steps:

1. We first employ any traditional POR method and first estimate the “semi-

commutative” relation as the traditional independence relation (then the cor-

responding condition φ is just true). This is possible because the proposed
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concepts are strictly weaker than the corresponding concepts used in tradi-

tional POR methods.

2. We then consider a number of scenarios in which we can prove that the semi-

commutative relation holds. In fact, these scenarios suffice to deal with a

number of important real-life applications.

Generally, we also want to detect the semi-commutative relation on the fly. This

is sometimes possible if the state interpolants we computed are indeed the weakest

preconditions. This step, however, is left as our future work.

To conclude this section, we demonstrate by presenting three common classes of

problems, from which the semi-commutative relation, semantically, can be derived

and proved.

Resource Usage of Concurrent Programs: Programs make use of limited re-

source (such as time, memory, bandwidth). Validation of resource usage in sequen-

tial setting is already a hard problem. It is even more challenging in the setting of

concurrent programs, where the search space, due to interleavings, is astronomically

huge.

Here we model this class of problems by using a resource variable r. Initially, r

is zero. Each process can increment or decrement variable r by some concrete value

(e.g., memory allocation or deallocation respectively). A process can also double

the value r (e.g., the whole memory is duplicated). However, the resource variable

r cannot be used in the guard condition of any transition6. The property to be

verified is that, “at all times, r is (upper-) bounded by some constant”.

Proposition 1. Let r be a resource variable of a concurrent program, and assume

the safety property at hand is ψ ≡ r ≤ C, where C is a constant. For all transitions

(assignment operations only) t1 : r = r + c1, t2 : r = r ∗ 2, t3 : r = r − c2 where

c1, c2 > 0, we have for all program point `:

〈`, true, t1 ↑ t2, ψ〉 ∧ 〈`, true, t1 ↑ t3, ψ〉 ∧ 〈`, true, t2 ↑ t3, ψ〉
6As a result, we cannot model the behavior of a typical garbage collector.
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Informally, other than common mathematical facts such as additions can com-

mute and so do multiplications and subtractions, we also deduce that additions can

semi-commute with both multiplications and subtractions while multiplications can

semi-commute with subtractions. This Proposition can be proved by using basic

laws of algebra.
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Figure 5.10: Example on performance of PDPOR

EXAMPLE 5.4 : Let us refer back to the example of two closely coupled processes

introduced in Sec. 5.2. Fig. 5.10 shows again the control flow graphs of two processes,

but now under the assumption that x is the resource variable of interest. We can

clearly see that the program is safe wrt. safety property ψ. From Proposition 1, we

need to explore only one complete trace to prove this safety.

In contrast, POR (and DPOR)-only methods will enumerate the full execution

tree which contains 19 states and 6 complete execution traces. Any technique which

employs only the notion of Mazurkiewicz trace equivalence for pruning will have

to consider all 6 complete traces (due to 6 different terminal states). SI alone can

reduce the search space in this example, and requires to explore only 9 states and
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4 subsumed states (as in Sec. 5.2). Symbolic methods as in [Grumberg et al., 2005;

Wang et al., 2009] also will not perform well with this example if we also consider the

search space generated by solver. That is because a general solver has no mechanism

to capture the fact that some transitions are relevant to the proof, though their

orders are not.

Detection of Race Conditions: [Wang et al., 2008a] proposed a property driven

pruning algorithm to detect race conditions in multithreaded programs. This work

has achieved more reduction in comparison with DPOR. The key observation is that,

at a certain location (program point) `, if their conservative “lockset analysis” shows

that a search subspace is race-free, such search subspace can be pruned away. As

we know, DPOR relies solely on the independence relation to prune redundant in-

terleavings (if t1, t2 are independent, there is no need to flip their execution order).

In [Wang et al., 2008a], however, even when t1, t2 are dependent, we may skip

the corresponding search space if flipping the order of t1, t2 does not affect the

reachability of any race condition. In other words, [Wang et al., 2008a] is indeed

a (conservative) realization of our PDPOR, specifically targeted for detection of

race conditions. Their mechanism to capture the such scenarios is by introducing a

trace-based lockset analysis.

Ensuring Optimistic Concurrency: In the implementations of many concurrent

protocols, optimistic concurrency, i.e., at least one process commits, is usually desir-

able. This can be modeled by introducing a flag variable which will be set when some

process commits. The flag variable once set can not be unset. It is then easy to see

that for all program point ` and transitions t1, t2, we have 〈`, flag = 1, t1 ↑ t2, ψ〉.
Though simple, this observation will bring us more reduction compared to tradi-

tional POR methods.
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5.7 Experiments

This section conveys two key messages. First, when state-based and trace-based

methods are not effective individually, our combined framework still offers significant

reduction. Second, property driven POR can be very effective, and applicable not

only to academic programs, but also to programs used as benchmarks in the state-

of-the-art.

We use a 3.2 GHz Intel processor and 2GB memory running Linux. Timeout is

set at 10 minutes. In the tables, cells with ‘-’ indicate timeout. We compare the

performance of Partial Order Reduction alone (POR), State Interpolation alone (SI),

the synergy of State Interpolation and Partial Order Reduction (SI+POR), i.e., the

semi-commutative relation is estimated using only step one presented in Sec. 5.6,

and when applicable, the synergy of State Interpolation and Property Driven Partial

Order Reduction (SI+PDPOR), i.e., the semi-commutative relation is estimated using

both steps presented in Sec. 5.6. For the POR component, we use the implementation

from [Bokor et al., 2011].

We start with parameterized versions of the producer/consumer example be-

cause its basic structure is extremely common. There are 2 ∗ N producers and 1

consumer. Each producer will do its own non-interfered computation first, modeled

by a transition which does not interfere with other processes. Then these producers

will modify the shared variable x as follows: each of the first N producers incre-

ments x, while the other N producers double the value of x. On the other hand,

the consumer consumes the value of x. The safety property is that the consumed

value is no more than N ∗ 2N .

Table 5.1 is about this example. The performances presented in Table 5.1 clearly

demonstrate the synergy benefits of POR and SI. SI+POR significantly outperforms

both POR and SI. Note that this example can easily be translated to the resource

usage problem, where our customized PDPOR requires only a single trace in order

to prove safety.
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POR SI SI+POR SI+PDPOR
N States T(s) States T(s) States T(s) States T(s)
2 449 0.03 514 0.17 85 0.03 10 0.01
3 18745 2.73 6562 2.43 455 0.19 14 0.01
4 986418 586.00 76546 37.53 2313 1.07 18 0.01
5 − − − − 11275 5.76 22 0.01
6 − − − − 53261 34.50 26 0.01
7 − − − − 245775 315.42 30 0.01

Table 5.1: Experiments on Producers/Consumer Example

To further demonstrate the power our synergy framework as well as the power of our

property driven POR, we experiment next on the Sum-of-ids program. Here, each

process (of N processes) has one unique id and will increment a shared variable sum

by this id. We prove that in the end this variable will be incremented by the sum

of all the ids.

Table 5.2 shows that POR does not result in any pruning for this benchmark.

However, SI, and therefore SI+POR significantly prune the search space. Here we

comment that the SI contribution is due to our specific interpolation algorithm;

using a generic SMT solver would not achieve the same reduction. We confirm this

by running the current version (4.1.2) of Z3 using the encodings presented in [Kahlon

et al., 2009]. The results do not scale. Finally, this example can also be translated

to resource usage problem, our use of property-driven POR again requires one single

trace to prove safety.

POR = None [Kahlon et al., 2009] w. Z3 SI+POR = SI SI+PDPOR

N States T(s) # Conflicts # Decisions T(s) States T(s) States T(s)

6 2676 0.44 1608 1795 0.08 193 0.05 7 0.01
8 149920 28.28 54512 59267 10.88 1025 0.27 9 0.01
10 − − − − − 5121 1.52 11 0.01
12 − − − − − 24577 8.80 13 0.01
14 − − − − − 114689 67.7 15 0.01

Table 5.2: Experiments on Sum-of-ids Example

We next use the parameterized version of the dining philosophers. We chose this
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for two reasons. First, this is a classic example often used in concurrent algorithm

design to illustrate synchronization issues and techniques for resolving them. Second,

previous work [Kahlon et al., 2009]7 has used this to demonstrate benefits from

combining POR and SI.

The first safety property used in [Kahlon et al., 2009], “it is not that all philoso-

phers can eat simultaneously”, is somewhat trivial. Therefore, here we verify a tight

property, which is (a): “no more than half the philosophers can eat simultaneously”.

To demonstrate the power of symbolic execution, we verify this property without

knowing the initial configurations of all the forks. Table 5.3 demonstrates the sig-

nificant improvements of SI+POR over POR alone and SI alone. We note that the

performance of our SI+POR algorithm is about 3 times faster than [Kahlon et al.,

2009].

None POR SI SI+POR

Problem States T(s) States T(s) States T(s) States T(s)

din-2(a) 22 0.01 22 0.01 21 0.01 21 0.01
din-3(a) 1773 0.10 646 0.05 153 0.03 125 0.02
din-4(a) − − 155037 19.48 1001 0.17 647 0.09
din-5(a) − − − − 6113 1.01 4313 0.54
din-6(a) − − − − 35713 22.54 24201 4.16
din-7(a) − − − − 202369 215.63 133161 59.69
bak-2 86 0.05 48 0.03 38 0.03 31 0.02
bak-3 1755 3.13 1003 1.85 264 0.42 227 0.35
bak-4 47331 248.31 27582 145.78 1924 5.88 1678 4.95
bak-5 − − − − 14235 73.69 12722 63.60

Table 5.3: Experiments on Dining Philosophers and Bakery Algorithm

We additionally considered a second safety property as in [Kahlon et al., 2009],

namely (b): “it is possible to reach a state in which all philosophers have eaten at

least once”. Our symbolic execution framework requires only a single trace (and

less than 0.01 second) to prove this property in all instances, whereas [Kahlon et

al., 2009] requires even more time compared to proving property (a). This again
7[Kahlon et al., 2009] is not publicly available. Therefore, it is not possible for us to make more

comprehensive comparisons.



Chapter 5. Combining State Interpolation and Partial Order Reduction 128

ICSE11 SI SI+PDPOR

Problem C T(s) States T(s) States T(s)

micro 2 17 1095 20201 10.88 201 0.04
stack 12 225 529 0.26 529 0.26
circular buffer ∞ 477 29 0.03 29 0.03
stateful20 10 95 1681 1.13 41 0.01

Table 5.4: Experiments on Programs from ICSE11

illustrates the scalability issue of [Kahlon et al., 2009], which is representative for

other techniques employing general-purpose SMT solver for symbolic pruning.

To further highlight the power of symbolic execution and the synergy of POR and

SI in our framework, we perform experiments on the “Bakery” algorithm. We note

that, due to existence of infinite domain variables, model checking cannot handle

Bakery algorithm. The results are also shown in Table 5.3.

Finally, we select four safe programs from [Cordeiro and Fischer, 2011] where the

experimented methods did not perform well, namely micro 2, stack, circular buffer,

and stateful20. Table 5.4 shows the running time of SI alone and of the combined

framework. For convenience, we also replicate the best running time reported in

[Cordeiro and Fischer, 2011] and C is the context switch bound used. Because we

assume no context switch bound, the corresponding value in our framework is ∞.

We can see that even our SI alone significantly outperforms the techniques in

[Cordeiro and Fischer, 2011]. We believe it is due to the following reasons. First, our

method is lazy, which means that only a path is considered at a time. [Cordeiro and

Fischer, 2011] itself demonstrates the usefulness of this. Second, but importantly,

we are eager in discovering infeasible paths. The program circular buffer, which has

only one feasible complete execution trace, therefore can be efficiently handled by

our framework. This is one important advantage of symbolic execution, as discussed

in [McMillan, 2010].

It is important to note that, PDPOR significantly improves the performance of SI

wrt. programs micro 2 and stateful20. This further demonstrates the applicability
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of our proposed framework.

5.8 Summary

We presented a framework for exploring and pruning the space of interleavings

of a concurrent system, pursuant to a target property. In our framework, we first

introduced a new notion of property driven partial order reduction in order to capture

the reasoning capability of POR, but importantly, this time potentially in regard to

the target property. We briefly showed how our theory on PDPOR can be customized

for specific applications. But the main contribution is that the framework combines

the use of trace-based reduction techniques with the more established notion of state

interpolant used in general-purpose SMT solvers as well as CEGAR. This combination

is synergistic in the sense that we obtain more pruning in the combination than if

we had applied both state and PDPOR in separate phases.
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Chapter 6

Complete Symmetry Reduction

The most general law in nature is

equity—the principle of balance and

symmetry which guides the growth

of forms along the lines of the

greatest structural efficiency.

Herbert Read

Symmetry reduction is a well-investigated technique to counter the state space ex-

plosion problem when dealing with concurrent systems whose processes are similar.

In fact, traditional symmetry reduction techniques rely on an idealistic assumption

that processes are indistinguishable. Because this assumption excludes many realis-

tic systems, there is a recent trend [Emerson and Trefler, 1999; Emerson et al., 2000;

Sistla and Godefroid, 2004; Wahl, 2007; Wahl and D’Silva, 2010] to consider sys-

tems of non-identical processes, where the processes are sufficiently similar that

the original gains of symmetry reduction can still be accomplished. However, this

necessitates an intricate step of detecting symmetry in the state exploration.

We start by considering an intuitive notion of symmetry, which is based on a

standard adaptation of the notion of bisimilarity. We say two states s1 and s2 are

symmetric if there is a “permutation” π such that s2 = π(s1), and if each successor
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state of s1 can be matched (via π) with a unique successor state of s2 while at

the same time each successor state of s2 can be matched (via π−1) with a unique

successor state of s1. In verification of a safety property ψ, we further require that

ψ and π(ψ) are equivalent.

We refer to this notion as strong symmetry. We mention that all recent works

which deal with heterogeneous systems (processes are not necessarily identical) have

the desire to capture this type of symmetry in the sense that they attempt, though

not quite successfully, to consider only states which are not strongly symmetric to

any already encountered state.

In this Chapter, we present a general approach to symmetry reduction for safety

verification of a finite multi-process system, defined parametrically, without any

prior knowledge about its global symmetry. In particular, we explicitly explore all

possible interleavings of the concurrent transitions, while applying pruning on “sym-

metric” subtrees. We now introduce a new notion of symmetry: weak symmetry.

Informally, this notion weakens the notion of permutation between states so that the

program counter is the paramount factor in consideration of symmetry. In contrast,

values of program variables are used in consideration of strong symmetry. The main

result is that our approach is complete wrt. weak symmetry: it only considers states

which are not weakly symmetric to an already encountered state.

In more details, we address the state explosion problem by employing symbolic

learning on the search tree of all possible interleavings. Specifically, our work is

based on the concept of interpolation. Here, interpolation is essentially a form of

backward learning where a completed search of a safe subtree is then formulated as

a recipe for pruning (every state/node is a root associated to some subtree). There

are two key ideas regarding our learning technique: First, each learned recipe for

a node not only can be used to prune other nodes having the same future (same

program point), but also can be transferred to prune nodes that having symmetric

futures (symmetric program points). Second, each recipe discovered by a node will
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be conveyed back to its ancestors, which gives rise to pruning of larger subtree.

Another important distinction is that our method learns symbolically with respect

to the safety property and the interleavings. In Section 6.5, we will confirm the

effectiveness of our method experimentally on some classic benchmarks.

T

C

t1 : ∀j • pcj 6= C t2 : id < 3 ∧ pc3 6= C

(a) Parameterized Transition System
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(b) Full Interleaving Tree

Figure 6.1: Modified 3-process Reader-Writer Protocol

Before proceeding, let us introduce two examples demonstrating the notions of

strong and weak symmetry.

EXAMPLE 6.1 (Modified Reader-Writer Protocol): We borrow this example, with mod-

ification, from [Wahl, 2007; Wahl and D’Silva, 2010] wherein are two “reader” pro-

cesses (indices 1, 2) and one “writer” process (index 3). We denote by C and T the
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local process states which indicate entering the critical section and in a “trying”

state, respectively. See Fig. 6.1(a). Note that pcj is the local control location of

process j and for each process, id is its process identifier. These concepts will be

defined more formally in Section 6.2.

For each process, there are two transitions from T to C. The first, t1, is executable

by any process provided that no process is currently in its critical section (∀j •pcj 6=
C). The second, t2, is however available to only readers (id < 3), and the writer must

be in a non-critical local state pc3 6= C. This example shows symmetry between the

reader processes, but because of their priority over the writer, we do not have “full”

symmetry [Wahl, 2007].

Fig. 6.1(b) shows the full interleaving tree. Transitions are labelled with su-

perscripts to indicate the process to which that transition is associated. Infeasible

transitions are arrows ending with crosses. Note that nodes CTT and TCT are

strongly symmetric, but neither is strongly symmetric with TTC.

EXAMPLE 6.2 (Sum-of-ids): See Fig. 6.2(a) and Fig. 6.2(b). Initially, the shared

variable sum is set to 0. There are two processes, each increments sum by the amount

of its process identifier, namely id. The local transition systems for process 1 and

process 2 are shown in Fig. 6.2(b). The full interleaving tree is shown in Fig. 6.2(c).

Program points are in angle brackets. For clarity, we use 〈1,1〉#1 and 〈1,1〉#2 to

denote the first and the second visit to the program point 〈1,1〉, respectively.

Let π be the function swapping the indices of the two processes. We can see that

the subtrees rooted at states 〈〈1,0〉, sum = 1〉 and 〈〈0,1〉, sum = 2〉 share the same

shape. However, due to the difference in the value of shared variable sum, strong

symmetry does not apply (in fact, any top-down technique, such as [Wahl, 2007;

Wahl and D’Silva, 2010; Sistla and Godefroid, 2004], cannot avoid exploring the

subtree rooted at 〈〈0,1〉, sum = 2〉, even if the subtree rooted at 〈〈1,0〉, sum = 1〉
has been traversed and proved to be safe).

There is however a weaker notion of symmetry that does apply. We explain
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sum = 0;

process(id) {
〈0〉 sum += id; 〈1〉
}

(a) Parameterized System

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : sum += id1 t{2} : sum += id2

(b) Its 2-process Concretization

〈0,0〉

〈1,0〉 〈0,1〉

〈1,1〉#1 〈1,1〉#2

sum = 0

sum = 1 sum = 2

sum = 3 sum = 3

{sum ≤ 3}

{sum ≤ 3 ∧ sum ≤ 3− id2} {sum ≤ 3 ∧ sum ≤ 3− id1}
t{1} t{2}

t{2} t{1}

(c) Full Interleaving Tree

Figure 6.2: Sum-of-ids Example

this by outlining our own approach, whose key feature is the computation of an

interpolant [Jaffar et al., 2009] for a node, by a process of backward learning. In-

formally, this interpolant represents a generalization of the values of the variables

such that the traversed tree has a similar transition structure, and also remains safe.

In the example, we require the safety property ψ ≡ sum ≤ 3 at every state, and

interpolants are shown as formulas inside curly brackets.

Using precondition propagation, the interpolant for state 〈〈1,1〉#1, sum = 3〉 is

computed as sum ≤ 3, and the interpolant for state 〈〈1,0〉, sum = 1〉 is computed

as Ψ〈1,0〉 ≡ sum ≤ 3 ∧ sum ≤ 3− id2. Using this, we can infer that Ψ〈0,1〉 ≡ sum ≤
3 ∧ sum ≤ 3 − id1 (obtained by applying π on Ψ〈1,0〉) is a sound interpolant for

program point 〈0,1〉. As sum = 2 |= Ψ〈0,1〉, the subtree rooted at 〈〈0,1〉, sum = 2〉
can be pruned.
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6.1 Related Work

Symmetry reduction has been extensively studied, e.g., [Emerson and Sistla, 1993;

Clarke et al., 1993; Ip and Dill, 1996; Emerson and Sistla, 1997]. Traditionally,

symmetry is defined as a transition-preserving equivalence, where an automorphism

π, other than being a bijection on the reachable states, also satisfies that (s, s′) is

a transition iff (π(s), π(s′)) is. There, this type of symmetry reduction is enforced

by unrealistic assumptions about indistinguishable processes. As a result, it does

not apply to many systems in practice.

One of the first to apply symmetry reduction strategies to “approximately sym-

metric” systems is [Emerson and Trefler, 1999], defining notions of near and rough

symmetry. Near and rough symmetry is then generalized in [Emerson et al., 2000]

to virtual symmetry, which still makes use of the concept of bisimilarity for symme-

try reduction. Though bisimilarity enables full µ-calculus model checking, the main

limitation of these approaches is that they exclude many systems, where bisimilarity

to the quotient is simply not attainable. Also, these approaches work only for the

verification of fully symmetric properties. No implementation is provided.

The work [Sistla and Godefroid, 2004] allows arbitrary divergence from sym-

metry, and accounts for this divergence initially by conservative optimism, namely

in the form of symmetric “super-structure”. Specifically, transitions are added to

the structure to achieve symmetry. A guarded annotated quotient (GAQ) is then

obtained from the super-structure, where added transitions are marked. This ap-

proach works well for programs with syntacticly specified static transition priority.

However, in general, the GAQ needs to be unwound frequently to compensate for

the loss in precision (false positive due to added transitions). This might affect the

running time significantly as this method might need to consider many combinations

of transitions which do not belong to the original structure.

In comparison with our technique, this method has a clear advantage that it

can handle arbitrary CTL∗ property. Nevertheless, our technique is more efficient
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both in space and time. Our technique is required to store an interpolant for each

non-subsumed state, whereas in [Sistla and Godefroid, 2004], a quotient edge might

require multiple annotations. Furthermore, ours does not require a costly prepro-

cessing of the program text to come up with a symmetric super-structure. Also,

extending [Sistla and Godefroid, 2004] to symbolic model checking does not seem

possible.

The most recent state-of-the-art regarding symmetry reduction, and also closest

to our spirit, is the lazy approach proposed by [Wahl, 2007; Wahl and D’Silva,

2010]. Here only safety verification is considered. This approach does not assume

any prior knowledge about (global) symmetry. Indeed, they initially and lazily

ignore the potential lack of symmetry. During the exploration, each encountered

state is annotated with information about how symmetry is violated along the path

leading to it. The idea is that more similarity between component processes entails

more compression is achieved.

In summary, the two main related works which are not restricted a priori on

global symmetry are [Sistla and Godefroid, 2004] and [Wahl, 2007]. That is, these

works allow the system to use process identifiers and therefore do not restrict the

behaviors of individual processes. This is not the case with the previously mentioned

works.

These works, [Sistla and Godefroid, 2004] and [Wahl, 2007], can be categorized as

top-down techniques. Fundamentally, they look at the syntactic similarities between

processes, and then come up with a reduced structure where symmetric states/nodes

are merged into one abstract node. When model checking is performed, an abstract

node might be concretized into a number of concrete nodes and each is checked one

by one ([Sistla and Godefroid, 2004] handles that by unwinding). For them, two

symmetric parental nodes are not guaranteed to have correspondingly symmetric

children. For us, by backward learning, we ensure that is the case. Consequently,

and most importantly, they do not exponentially improve the runtime, only compress
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the state space.

Consider again Ex. 6.1 (Fig. 6.1). A top-down approach will consider TTC as

a “potentially” symmetric state of CTT, and all three states CTT, TCT, and TTC

are merged into one abstract state. While having compaction, it is not the case

that the search space traversed is of this compact size. As a non-symmetric state

(TTC) is merged with other mutually symmetric states (CTT and TCT), in generating

the successor abstract state, the parent abstract state is required to be concretized

and both transitions t
{2}
2 (emanating from CTT) and transition t

{1}
2 (emanating

from TCT) are considered (in fact, infeasible transition t
{3}
2 is also considered). In

summary, compaction may not lead to any reduction in the search space.

We finally mention that we consider only safety properties because we wish

to employ abstraction in the search process. And it is precisely a judicious use

of abstraction that enables us to obtain more pruning in comparison with prior

techniques. We prove this in principle by showing that we are complete wrt. weak

symmetry, and we demonstrate this experimentally on some classic benchmarks.

6.2 Preliminaries

We consider a parametrically defined n-process system, where n is fixed. In accor-

dance with standard practice in works on symmetry, we assume that the domain

of discourse of the program variables is finite so as to guarantee termination of

the search process of the underlying transition system. Infinite domains may be

accommodated by some use of abstraction, as we show in one benchmark example

below.

We employ the usual syntax of a deterministic imperative language, and commu-

nication occurs via shared variables. Each process has a unique and predetermined

process identifier, and this is denoted parametrically in the system by the special

variable id. For presentation purpose, the concrete value of id for each individual

process ranges from 1 to n. We note that the variable id cannot be changed. Even
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though the processes are defined by one parameterized system, their dynamic be-

haviors can be arbitrarily different. This would depend on how id is expressed in

the parameterized system.

Consider the 2-process parameterized system in Fig. 6.3(a), with (local) program

points in angle brackets. Fig. 6.3(b) “concretizes” the processes explicitly. Note the

use in the first process of the variable id1 which is not writable in the process, and

whose value is 1. Similarly, in the other process, id2 has the value 2 and is not

writable either.

x = 1;

process(id) {
〈0〉 await(x == id);

〈1〉 x++; 〈2〉
}

(a) Parameterized System

〈0〉

〈1〉

〈2〉

〈0〉

〈1〉

〈2〉

t
{1}
1 : await(x == id1) t

{2}
1 : await(x == id2)

t
{1}
2 : x++ t

{2}
2 : x++

(b) Its 2-process Concretization

Figure 6.3: Example: Awaits then Increments

As before, a state s ∈ SymStates comprises of two parts: the program point com-

ponent and the symbolic constraint component. Now, however, the constraint com-

ponent JsK also includes the valuation of the process identifiers. As such, JsK can

now be denoted by a pair 〈val, pids〉, where val refers to the valuation of normal

program variables while pids refers to the valuation of process identifiers. Note that

all states from the same parameterized system share the same valuation of process

identifiers. Therefore, when the context is clear, we omit the valuation pids of a

state.

Again consider in Fig. 6.3 with two processes P1 and P2 with variables id1 = 1

and id2 = 2 respectively. In the system, it is specified parametrically that each

process awaits for x == id. In P1, this is interpreted as await(x == id1) while

P2, this is interpreted as await(x == id2). Each process has 2 transitions: the
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first transfers it from control location 〈0〉 to 〈1〉, whereas the second transfers it

from control location 〈1〉 to 〈2〉. Initially we have x = 1, i.e., the initial state

s0 is 〈〈0,0〉, 〈x = 1, id1 = 1 ∧ id2 = 2〉〉. We note that at s0, both t
{1}
1 and t

{2}
1 are

schedulable. However, among them, only t{1}1 is enabled. By taking transition t
{1}
1 ,

P1 moves from control location 〈0〉 to 〈1〉, and the whole system moves from state

〈〈0,0〉, 〈x = 1, id1 = 1 ∧ id2 = 2〉〉 to state 〈〈1,0〉, 〈x = 1, id1 = 1 ∧ id2 = 2〉〉. We note

that here the transition t{2}1 is still disabled. From now on, let us omit the valuation

of process identifiers. The whole system then takes the transition t
{1}
2 and moves

from state 〈〈1,0〉, x = 1〉 to state 〈〈2,0〉, x = 2〉. Now, t{2}1 becomes enabled. Subse-

quently, the system takes t{2}1 and t{2}2 to move to state 〈〈2,1〉, x = 1〉 and finally to

state 〈〈2,2〉, x = 3〉.

6.2.1 Symmetry

Given an n-process system, let I = [1 · · ·n] denote its indices, to be thought of as

process identifiers. We write Sym I to denote the set of all permutations π on index

set I. Let Id be the identity permutation and π−1 the inverse of π.

For an indexed object b, such as a program point, a variable, a transition,

valuation of program variables, or a formula, whose definition depends on I, we can

define the notion of permutation π acting on b, by simultaneously replacing each

occurrence of index i ∈ I by π(i) in b to get the result of π(b).

EXAMPLE 6.3 : Consider the system in Fig. 6.3(b). Let the permutation π swap the

two indices (1 7→ 2, 2 7→ 1). Applying π to the valuation x = 1 gives us π(x = 1) ≡
x = 1, as x is a shared variable. Applying π to the formula x = id1 ∧ id1 = 1 gives

us π(x = id1 ∧ id1 = 1) ≡ (x = id2 ∧ id2 = 1). On the other hand, applying π to the

transition t
{1}
1 ≡ await(x = id1) will result in π(t{1}1 ) ≡ t{2}1 ≡ await(x = id2).

Definition 32. For π ∈ Sym I and state s ∈ SymStates, s ≡ 〈`, 〈val, pids〉〉, the

application of π on s is defined as 〈π(`), 〈π(val), pids〉〉.

In other words, permutations do not affect the valuation of process identifiers.
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EXAMPLE 6.4 : Consider again the system in Fig. 6.3(b). Assume the π is the permu-

tation swapping the 2 indices (1 7→ 2, 2 7→ 1). We then have π(〈〈1,0〉, 〈x = 1, id1 = 1 ∧ id2 = 2〉〉) ≡
〈〈0,1〉, 〈x = 1, id1 = 1 ∧ id2 = 2〉〉. Please note that while π has no effect on shared

variable x and valuation of process identifiers id1, id2, it does permute the local

program points.

Definition 33. For π ∈ Sym I, a safety property ψ is said to be symmetric wrt.

π if ψ ≡ π(ψ).

We next present a traditional notion of symmetry.

Definition 34 (Strong Symmetry). For all π ∈ Sym I, all safety property ψ, and

all s, s′ ∈ SymStates, we say that s is strongly π-similar to s′ wrt. ψ, denoted by

s
π,ψ≈ s′ if ψ is symmetric wrt. π and the following conditions hold:

• π(s) = s′

• for each transition t such that s t−→ d we have s′
π(t)−→ d′ and d

π,ψ≈ d′

• for each transition t′ such that s′ t′−→ d′ we have s
π−1(t′)−→ d and d

π,ψ≈ d′.

One of the strengths of this work is to allow symmetry by disregarding the values

of the program variables.

Definition 35 (Weak Symmetry). For all π ∈ Sym I, all safety property ψ, and

all s, s′ ∈ SymStates such that s ≡ 〈`, JsK〉 and s′ ≡ 〈`′, Js′K〉, we say that s is weakly

π-similar to s′ wrt. ψ, denoted by s
π,ψ∼ s′ if ψ is symmetric wrt. π and the following

conditions hold:

• π(`) ≡ `′

• JsK |= ψ iff Js′K |= π(ψ)

• for each transition t such that s t−→ d we have s′
π(t)−→ d′ and d

π,ψ∼ d′

• for each transition t′ such that s′ t′−→ d′ we have s
π−1(t′)−→ d and d

π,ψ∼ d′.
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x[1] = x[2] = 0;

process(id) {
〈0〉 x[id] = id; 〈1〉
}

(a) Parameterized System

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : x[id1]:=id1 t{2} : x[id2]:=id2

(b) Its 2-process Concretization

s0

s1 s′1

s2

t{1} t{2}

t{2}

x[1] = 0, x[2] = 0

x[1] = 1, x[2] = 0

x[1] = 1, x[2] = 2

x[1] = 0, x[2] = 2

φ2 ≡ ψ ≡ {x[id1] + x[id2] ≤ 3}

φ1 ≡ {ψ ∧ x[id1] + id2 ≤ 3}

(c) The Traversed Tree

Figure 6.4: Example: Assign id to x[id]

We note here that, from now on, unless otherwise mentioned, symmetry means weak

symmetry while π-similar means weakly π-similar. Also, it trivially follows that if

s is π-similar to s′ then s′ is π−1-similar to s. Consequently, if s is symmetric with

s′, then s′ is symmetric with s too.

6.3 Motivating Examples

EXAMPLE 6.5 : Fig. 6.4 shows a parameterized system and its 2-process concretiza-

tion. The shared array x contains 2 elements, initially 0. For convenience, we assume

that array index starts from 1. Process 1 assigns id1 (whose value is 1) to x[1] while

process 2 assigns id2 (whose value is 2) to x[2].
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Consider the safety property ψ ≡ x[1] + x[2] ≤ 3, interpreted as ψ ≡ x[id1] +

x[id2] ≤ 3. The reachability tree explored is in Fig. 6.4(c). Circles are used to

denote states, while double-boundary circles denote subsumed/pruned states.

From the initial state s0 ≡ 〈〈0,0〉, 〈x[1] = 0 ∧ x[2] = 0, id1 = 1 ∧ id2 = 2〉〉 process 1

progresses first and moves the system to the state:

s1 ≡ 〈〈1,0〉, 〈x[1] = 1 ∧ x[2] = 0, id1 = 1 ∧ id2 = 2〉〉.
From s1, process 2 now progresses and moves the system to the state:

s2 ≡ 〈〈1,1〉, 〈x[1] = 1 ∧ x[2] = 2, id1 = 1 ∧ id2 = 2〉〉.
Note that s0, s1, and s2 are all safe wrt. ψ. As there is no transition emanating from

s2, the interpolant for s2 is computed as Ψ2 ≡ ψ ≡ x[id1] + x[id2] ≤ 3. The pair

〈〈1,1〉,Ψ2〉 is memoized. The interpolant for s1 can be computed as a conjunction of

two formulas. One concerns the safety of s1 itself, and the other concerns the safety

of the successor state from t{2}. In other words, we can have Ψ1 ≡ ψ ∧ pre(t{2}, ψ),

where pre(t, φ) denotes a precondition wrt. to the program transition t and the

postcondition φ. Consequently, we can have Ψ1 ≡ ψ ∧ x[id1] + id2 ≤ 3. The pair

〈〈1,0〉,Ψ1〉 is memoized.

Now we arrive at state s′1 ≡ 〈〈0,1〉, 〈x[1] = 0 ∧ x[2] = 2, id1 = 1 ∧ id2 = 2〉〉. This

is indeed a symmetric image of state s1 which we have explored and proved to be

safe before. Here, we discover the permutation π to transform the program point

〈1,0〉 to program point 〈0,1〉. Clearly π simply swaps the two indices. We also

observe that the safety property ψ is symmetric wrt. this π, i.e., π(ψ) ≡ ψ (ψ is

invariant wrt. π). In the next step, we check whether Js′1K implies the transformed

interpolant π(Ψ1). We have π(Ψ1) ≡ π(x[id1] + x[id2] ≤ 3 ∧ x[id1] + id2 ≤ 3)

≡ x[id2]+x[id1] ≤ 3∧x[id2]+id1 ≤ 3. As Js′1K |= x[id2]+x[id1] ≤ 3∧x[id2]+id1 ≤ 3,

we do not need to explore s′1 any further. In other words, the subtree rooted at s′1

is pruned.

EXAMPLE 6.6 : Consider the concurrent system in Fig. 6.5. We are interested in

safety property ψ ≡ x < 2. As x is a shared variable, ψ is symmetric wrt. all
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x = 0;
process(id) {
〈0〉 if (id == 1) x++;
〈1〉
}

(a) Parameterized System
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(b) Its 3-process Concretization
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φ1 ≡ {x < 2 ∧ id3 6= 1 ∧ id2 6= 1}

φ2 ≡ {x < 2 ∧ id3 6= 1}

φ3 ≡ {ψ ≡ x < 2}

Note: φ′1 ≡ {x < 1 ∧ id1 = 1 ∧ id3 6= 1}

(c) The Traversed Tree

Figure 6.5: Example: Only Process #1 Increments

possible permutations.

The reachability tree is depicted in Fig. 6.5(c). From the initials state s0 we

arrive at states s1, s2, and s3, where:

s0 ≡ 〈〈0,0,0〉, 〈x = 0, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉
s1 ≡ 〈〈1,0,0〉, 〈x = 1, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉
s2 ≡ 〈〈1,1,0〉, 〈x = 1, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉
s3 ≡ 〈〈1,1,1〉, 〈x = 1, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉.
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At s3 we compute its interpolant Ψ3 ≡ ψ ≡ x < 2. In a similar manner as be-

fore, we compute the interpolant for s2, which is Ψ2 ≡ x < 2 ∧ id3 6= 1. When

we are at state s′2 ≡ 〈〈1,0,1〉, 〈x = 1, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉, we look for a

permutation π1 such that π1(〈1,1,0〉) ≡ 〈1,0,1〉. Clearly we can have π1 as the

permutation which fixes the first index and swaps the last 2 indices. Moreover,

Js′2K ≡ 〈x = 1, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉 |= π1(Ψ2) ≡ x < 2 ∧ id2 6= 1. Therefore,

s′2 is pruned.

Similarly, the interpolant Ψ1 for s1 is computed as x < 2 ∧ id2 6= 1 ∧ id3 6= 1.

When at state s′1 ≡ 〈〈0,1,0〉, 〈x = 0, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉, we look for a per-

mutation π2 such that π2(〈1,0,0〉) ≡ 〈0,1,0〉. Clearly we can have π2 as the permu-

tation which fixes the third index and swaps the first two indices. However, Js′1K ≡
〈x = 0, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉 6|= π2(Ψ1) ≡ x < 2∧ id1 6= 1∧ id3 6= 1. Thus the

subtree rooted at s′1 cannot be pruned and it requires further exploration. After s′1

has been traversed, the interpolant for s′1 is computed as Ψ′1 ≡ x < 1∧id1 = 1∧id3 6=
1. Next we visit s′′1 ≡ 〈〈0,0,1〉, 〈x = 0, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉〉. We can find a

permutation π3 which fixes the first index and swaps the last 2 indices (π3 ≡ π1).

We have π3(〈0,1,0〉 ≡ 〈0,0,1〉. Also Js′′1K ≡ 〈x = 0, id1 = 1 ∧ id2 = 2 ∧ id3 = 3〉 |=
π3(Ψ′1) ≡ x < 1 ∧ id1 = 1 ∧ id2 6= 1. As a result, we can avoid considering the

subtree rooted at s′′1.

In the two above examples, we have shown how the concept of interpolation

can help capture the shape of a subtree. More importantly, computed interpolants

can be transformed in order to detect the symmetry as well as the non-symmetry

(mainly due to the use of id) between candidate subtrees.

6.4 Complete Symmetry Reduction Algorithm

Our algorithm, presented in Fig. 6.6, naturally performs a depth first search of the

interleaving tree. It assumes the safety property to be known as ψ. Initially, we

explore the initial state s0 with an empty history h. During the search process,
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Assume safety property ψ and initial state s0
〈1〉 Initially : Explore(s0, ∅)

function Explore(s, h)
Let s be 〈`, JsK〉

〈2〉 if JsK 6|= ψ Report Error and TERMINATE
〈3〉 if ∃ π • π(ψ) ≡ ψ ∧ ∃ `′ • ` ≡ π(`′) ∧ ∃ Ψ •memoed(`′,Ψ) ∧ JsK |= π(Ψ)

return π(Ψ)
〈4〉 if s ∈ h /* We hit a cycle */
〈5〉 Let θ be the cyclic path
〈6〉 Assert(Cyclic(s, θ))
〈7〉 return true /* Initial value for fix-point computation */

else
〈8〉 h := h ∪ {s}

endif
〈9〉 Ψ := ψ
〈10〉 foreach t ∈ Schedulable(s) do
〈11〉 if t ∈ Enabled(s)
〈12〉 s

t−−→ s′ /* Execute t */
〈13〉 Ψ′ := Explore(s′, h)
〈14〉 Ψ := Ψ ∧ pre(t,Ψ′)

else
〈15〉 Ψ := Ψ ∧ pre(t, false)

endif
〈16〉 endfor
〈17〉 Let Θ be {θ | Cyclic(s, θ)}
〈18〉 if (Θ 6= ∅) Ψ := FIX-POINT(s,Θ,Ψ)

/* s is a loop point, so we ensure Ψ is an invariant along the paths Θ */
〈19〉 Retractall(Cyclic(s, θ))
〈20〉 h := h \ {s}
〈21〉 memo(`,Ψ) and return Ψ
end function

Figure 6.6: Complete Symmetry Reduction Algorithm (DFS)

the function Explore will be recursively called. Note that termination is achieved by

assuming finite setting.

Base Cases: The first base case is when the current state does not conform to the

safety property ψ (line 2). We then immediately report an error and terminate. The

second base case applies when the current state (subtree) has a symmetric image
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(subtree) which has already been traversed and proved to be safe before (line 3).

We have well exemplified such scenarios in previous Sections.

The third base case requires some elaboration. Using the history h, we detect

a cycle (line 4). Specifically, there is a cyclic path θ from s back to s. We note

this down and return true. Later, after the descendants of s have been traversed,

we require a fix-point computation of the interpolant for s, as shown in line 17-18.

The function FIX-POINT computes an invariant interpolant for s, wrt. the initial

value Ψ and the set of cyclic paths Θ. Essentially, this function involves computing,

for each cyclic path, a path invariant. Such a computation is performed backwards,

using a previously computed invariant at the bottom of the cyclic path, and then

extracting a new invariant for s. Then each computed path invariant is fed into other

paths in order to compute a new invariant. The process terminates at a fix-point.

Assuming finite setting, termination is then guaranteed because of monotonicity

of the path invariant computation and the fact that there are only finitely many

possible invariants (note JsK itself is an invariant). Finally, the interpolant for each

state appearing in these cyclic paths are now updated appropriately. This is in light

of now having an invariant for all of them simultaneously.

We remark here that this fix-point task, though seemingly complicated, is in

fact routine. We refer interested readers to [Jaffar et al., 2011] for more details

regarding this matter. We also remark that for many concurrent protocols, where

involved operations are mainly “set” and “re-set” operations, a fix-point is achieved

just after one iteration.

Recursive Traversal and Computing the Interpolants: Our algorithm recur-

sively explores the successors of the current state by the recursive call in line 13.

The interpolant Ψ for the current state is computed as from line 9-18. As mentioned

above, cyclic paths are handled in line 17-18. The operation pre(t, φ) denotes the

precondition computation wrt. the program transition t and the postcondition φ.

In practice, we implement this as an approximation of the weakest precondition
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computation [Dijkstra, 1975], as in previous Chapters.

Theorem 5 (Soundness). Our symmetry reduction algorithm is sound.

Here, by soundness, we mean that all pruning performed in line 3 will not affect

the verification result.

Proof Outline. Let the triple {Ψ} 〈〈pc1, pc2, · · · , pcn〉;P1||P2|| · · · ||Pn〉 {ψ} denote

the fact that Ψ is a sound interpolant for program point 〈pc1, pc2, · · · , pcn〉 wrt. the

safety property ψ and the concurrent system P1||P2|| · · · ||Pn. We will not prove that

our interpolant computation (line 9-18) is a sound computation. Instead, we assume

such soundness by following [Jaffar et al., 2009; Jaffar et al., 2011]. Let us assume

that the soundness of that triple is witnessed by a proof P. By consistently renaming

P with a renaming function π ∈ Sym I, we can derive a new sound fact (i.e., a

proof), which is:

{π(Ψ)} π(〈〈pc1, pc2, · · · , pcn〉;P1||P2|| · · · ||Pn〉) {π(ψ)} ≡
{π(Ψ)} 〈〈pcπ(1), pcπ(2), · · · , pcπ(n)〉;Pπ(1)||Pπ(2)|| · · · ||Pπ(n)〉 {π(ψ)}

Since P1, P2, · · ·Pn come from the same parameterized system and π is a bijection

on I, we have:

Pπ(1)||Pπ(2)|| · · · ||Pπ(n) ≡ P1||P2|| · · · ||Pn
Therefore, {π(Ψ)} 〈〈pcπ(1), pcπ(2), · · · , pcπ(n)〉;P1||P2|| · · · ||Pn〉 {π(ψ)} must hold too.

In the case that ψ is symmetric wrt. π, we have π(ψ) ≡ ψ. Thus π(Ψ) is a sound

interpolant for program point 〈pcπ(1), pcπ(2), · · · , pcπ(n)〉 wrt. the same safety prop-

erty ψ and the same concurrent system P1||P2|| · · · ||Pn. As a result, the use of

interpolant π(Ψ) for pruning (at line 3 in Fig. 6.6) is sound.

Definition 36 (Symmetry Preserving Precondition Computation). Given a para-

metrically defined n-process system and a safety property ψ, the precondition com-

putation pre used in our algorithm is said to be symmetry preserving if for all π ∈
Sym I, for all transition t and all postcondition φ • π(pre(t, φ)) ≡ pre(π(t), π(φ)).
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This property means that our precondition computation is consistent wrt. re-

naming operation. In other words, the implementation of pre is independent of the

naming of variables contained in its inputs. A reasonable implementation of pre can

easily ensure this.

Definition 37 (Monotonic Precondition Computation). Given a parametrically de-

fined n-process system and a safety property ψ, the precondition computation pre used

in our algorithm is said to be monotonic if for all transition t and all postconditions

φ1, φ2 • φ1 → φ2 implies pre(t, φ1)→ pre(t, φ2).

We emphasize here that the weakest precondition computation [Dijkstra, 1975]

does possess the monotonicity property. As is well-known, computing the weakest

precondition in all the cases is very expensive. However, in practice (and in par-

ticular in the experiments we have performed), we often observe this monotonicity

property with the implementation of our precondition computation. Possible imple-

mentations for this operation are discussed in Chapter 3 and also in [Rybalchenko

and Sofronie-Stokkermans, 2007; Jaffar et al., 2009; Jaffar et al., 2011].

Definition 38 (Completeness in Symmetry Reduction). In proving a parametrically

defined n-process system with a global state space SymStates and a safety property

ψ, an algorithm which traverses the reachability tree is said to be complete wrt. a

symmetry relation R iff for all s, s′ ∈ SymStates, s R s′ implies that the algorithm

will avoid traversing either the subtree rooted at s or the subtree rooted at s′.

We remark here that our definition of completeness does not concern with the

power of an algorithm in giving the answer to a safety verification question. This

definition of completeness, however, is about the power of an algorithm in exploiting

symmetry for search space reduction.

Theorem 6 (Completeness). Our symmetry reduction algorithm is complete wrt.

the weak symmetry relation if our operation pre is both monotonic and symmetry

preserving.
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Proof Outline. Assume that s, s′ ∈ SymStates and s is weakly π-similar to s′.

W.l.o.g. assume we encounter s first. If the subtree rooted at s is pruned (due to

subsumption), the theorem trivially holds. The theorem also trivially holds if s is

not a safe root. Now we consider that the subtree rooted as s is proved to be safe

and the returned interpolant is Ψ. We will prove by structural induction on this

interpolated subtree that s′ will indeed be pruned, i.e., Js′K |= π(Ψ).

For simplicity of the proof, we will prove for loop-free programs only. In other

words, we ignore our loop handling mechanism (line 4-7,17-18). Note that our

theorem still holds for the general case. However, to prove this, we will require

another induction on our fix-point computation in line 18.

For the base case that Ψ is ψ (when there is no schedulable transition from s)

due to the definition of weak symmetry relation, there is no schedulable transition

from s′ and Js′K |= π(ψ). Therefore, traversing the subtree rooted at s′ is avoided.

As the induction hypothesis, assume now that the theorem holds for all the de-

scendants of state s. Let assume that Ψ ≡ ψ∧Ψ1∧Ψ2∧· · ·∧Ψk∧Ψk+1∧· · ·∧Ψm, where

Ψ1 · · ·Ψk are the interpolants contributed by enabled transitions in s and Ψk+1 · · ·Ψm

are the interpolants contributed by schedulable but disabled transitions in s (line 14

and 15). Now assume the contrary that Js′K 6|= π(Ψ). We will show that this would

lead to a contradiction. Using the first condition of weak symmetry relation, obvi-

ously Js′K |= π(ψ). As such, there must exist some 1 ≤ j ≤ m such that Js′K 6|= π(Ψj).

There are two possible cases: (1) Ψj is contributed by an enabled transition; (2) Ψj

is contributed by a disabled, but schedulable transition.

Let us consider case (1) first. Assume Ψj corresponds to transition t ∈ Enabled(s)

and s
t→ d. By definition we have s′

π(t)→ d′ and d is weakly π-similar to d′.

Let Ψd be interpolant for the subtree rooted at d. By induction hypothesis, we

have Jd′K |= π(Ψd). Obviously, we have Js′K |= pre(π(t), Jd′K), by monotonicity

of pre, we deduce Js′K |= pre(π(t), π(Ψd)). As pre is symmetry preserving, Js′K |=
pre(π(t), π(Ψd)) ≡ π(pre(t,Ψd)) ≡ π(Ψj). Consequently we arrive at the fact that
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Js′K |= π(Ψj) which is a contradiction.

For case (2), by using the symmetry preserving property of pre and the fact that

π(false) ≡ false, we also derive a contradiction.

6.5 Experimental Evaluation

We used a 3.2 GHz Intel processor and 2GB memory running Linux. Unless oth-

erwise mentioned, timeout is set at 300 seconds, and ‘-’ indicates timeout. In this

section, we benchmark our proposed approach, namely Complete Symmetry Reduc-

tion (CSR), against current state-of-the-arts.

CSR RSR NSR

# Phil Visited Subsumed T(s) Visited Subsumed T(s) Visited Subsumed T(s)

3 68 29 0.02 67 27 0.02 191 79 0.06
4 230 134 0.09 328 184 0.13 1246 702 0.81
5 662 446 0.28 1509 981 0.71 7517 4893 4.93
6 1778 1304 0.85 7356 5216 4.18 43580 30908 34.53
7 4584 3552 2.55 35079 26335 28.83 − − −
8 11526 9281 7.54 − − − − − −
9 28287 23432 22.6 − − − − − −
10 67920 57504 58.07 − − − − − −
11 159738 137609 226.86 − − − − − −

Table 6.1: Experiments on Dining Philosophers

Our first example is the classic dining philosophers problem. As commonly known,

it exhibits rotational symmetry. However, and more importantly, we exploit far

more symmetry than that. In details, at any program point, rotational symme-

try is applicable. Nevertheless, for certain program points, when some transitions

have been taken, the system exhibits more symmetry than just rotational symme-

try. With this benchmark, we demonstrate the power of our complete symmetry

reduction (CSR) algorithm. Here, we verify a tight safety property that “no more

than half the philosophers can eat simultaneously”.

Table 6.1 presents three variants: Complete Symmetry Reduction (CSR), Rota-
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tional Symmetry Reduction (RSR), and No Symmetry Reduction (NSR). The number

of stored states is the difference between the number of visited states (Visited column)

and subsumed states (Subsumed column). Note that although RSR achieves linear

reduction compared to NSR, it does not scale well. CSR significantly outperforms

RSR and NSR in all the instances.

Complete Symmetry Reduction Lazy Symmetry Reduction

# Readers # Writers Visited Subsumed T(s) Abstract States T(s)

2 1 35 20 0.01 9 0.01
4 2 226 175 0.19 41 0.10
6 3 779 658 0.93 79 67.80
8 4 1987 1750 3.23 165 81969.00
10 5 4231 3820 9.21 − −

Table 6.2: Experiments on Reader-Writer Protocol

Next consider the Reader-Writer Protocol from [Wahl, 2007; Wahl and D’Silva,

2010]. Here we highlight the aspect of search space size as compared to top-down

techniques, of which the most recent implementation of Lazy Symmetry Reduction

[Wahl and D’Silva, 2010] is chosen as a representative 1. Table 6.2 shows that al-

though lazy symmetry reduction has aggressively compressed the state space (which

now grows roughly in linear complexity), the running time is still exponential. In

other words, the number of abstract states is not representative of the search space.

In contrast, the running time of our method is significantly better. In the instance

of 8 readers and 4 writers, we extended the timeout for [Wahl and D’Silva, 2010] to

finish; and it takes almost 1 day.

Next we experiment with the “Sum-of-ids” example mentioned earlier. To the

best of our knowledge, there is no symmetry reduction algorithm which can detect

and exploit symmetry here. Table 6.3 shows we have significant symmetry reduction.

In term of memory (stored states), we enjoy linear complexity. For reference, we

also report the running time of this example, without symmetry reduction, using

SPIN 5.1.4 [SPIN, ].
1We receive this implementation from the authors of [Wahl and D’Silva, 2010].
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Complete Symmetry Reduction SPIN-NSR

# Processes Visited Subsumed T(s) Visited Subsumed T(s)

10 57 45 0.02 6146 4097 0.03
20 212 190 0.04 11534338 9437185 69.70
40 822 780 0.37 − − −
60 1832 1770 1.91 − − −
80 3242 3160 7.62 − − −
100 5052 4950 22.09 − − −

Table 6.3: Experiments on Sum-of-ids Example

Complete Symmetry Reduction SI

# Processes Visited Subsumed T(s) Visited Subsumed T(s)

3 65 31 0.10 265 125 0.43
4 182 105 0.46 1925 1089 5.89
5 505 325 2.26 14236 9067 74.92
6 1423 983 11.10 − − −

Table 6.4: Experiments on Bakery Algorithm

In the fourth and last example, we apply our method to handle infinite domain

variables and loops. We choose the well-known Bakery algorithm to perform the ex-

periments, and we use the well-known abstraction of using an inequality to describe

each pair of counters to close the loops. Again, as far as we are aware of, there has

been no symmetry reduction algorithm which can detect and exploit symmetry for

this example. Table 6.4 shows the significant improvements due to our symmetry

reduction, compared to just symbolic execution with interpolation, denoted as SI.

6.6 Summary

We presented a method of symmetry reduction for searching the interleaving space

of a concurrent system of transitions in pursuit of a safety property. The class of

systems considered, by virtue of being defined parametrically, is completely general;

the individual processes may be at any level of similarity to each other. We then

enhanced a general method of symbolic execution with interpolation for traditional

safety verification of transition systems, in order to deal with symmetric states.
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We then defined a notion of weak symmetry, one that allows for more symmetry

than the stronger notion that is used in the literature. Finally, we showed that our

method, when employed with an interpolation algorithm which is monotonic, can

exploit weak symmetry completely.
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Chapter 7

Conclusion

The true function of philosophy is

to educate us in the principles of

reasoning and not to put an end to

further reasoning by the

introduction of fixed conclusions.

George Henry Lewes

This Chapter concludes the thesis. We will summarize the thesis in Section 7.1 and

informally discuss some foreseeable impacts of this thesis in Section 7.2.

7.1 Summary

In this thesis, we study the framework for program reasoning founded upon symbolic

execution. As discussed, symbolic execution is intuitive while very powerful since it

enables us to potentially obtain fully accurate reasoning. We apply this reasoning

framework to two important and extremely difficult domain areas, namely program

path analysis and safety verification of concurrent programs. The main challenge

comes from the path explosion problem of symbolic execution, due to the extremely

high demand for path-sensitivity, which by nature is inevitable in the domain areas.

This thesis contributes by proposing custom interpolation methods, target for the
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two domain areas, and specifically address the scalability issues caused by loops and

interleavings. We again briefly summarize our contributions as below.

First, we address the Worst-Case Execution Time (WCET) path analysis problem

for bounded programs, formalized as discovering a tight upper bound of a timing

variable. A key challenge is posed by complicated loops whose iterations exhibit

non-uniform behavior. Traditional methods such as abstract interpretation often

are too inaccurate. We adopt a brute-force strategy by simply unrolling loops, and

show how to make this scalable while preserving accuracy.

Our algorithm performs symbolic simulation of the program. It maintains ac-

curacy because it preserves, at critical points, path-sensitivity. In other words, the

simulation detects infeasible paths. Scalability, on the other hand, is dealt with

by using summarizations, compact representations of the analyses of loop itera-

tions. They are obtained by a judicious use of abstraction which preserves critical

information flowing from one iteration to another. These summarizations can be

compounded in order for the simulation to have linear complexity : the symbolic

execution can in fact be asymptotically shorter than a concrete execution. This

is important because the cost of symbolic simulation is, clearly, far higher than

concrete simulation.

Second, we consider the path analysis problem for general resource usage. This

includes the analysis of non-cumulative resource such as memory high watermark.

For precision and practicality, we target our framework to accommodate both path

sensitivity and user assertions. We show that, under a greedy treatment for loop to

make the analysis scalable, enforcing assertions produces unsound results.

We address the challenge using a novel two-phase algorithm. The first phase

employs a greedy strategy in the unrolling of loops. This unrolling explores and

summarizes what is conceptually a symbolic execution tree, which is of enormous

size. At the end of the first phase, we produce a compact representation by re-

stricting attention only to the assertion variables. The simplified tree is represented
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in the form of transitions in order to avoid an upfront consideration, which still

remains exponential in the loop iterations. Finally, our second phase attacks the

remaining problem, to determine the longest path in this simplified tree, directly

with an adaptation of a dynamic programming algorithm.

Third, we consider the problem of reasoning about interleavings in safety ver-

ification of concurrent processes. We start with a systematic search tree depicting

the program states across all possible interleavings. While this setting is totally

general, a naive implementation based on explicit enumeration is clearly impracti-

cal. We then consider an algorithm schema which can prune the search space. We

contribute by enhancing trace-based methods, collectively known as “Partial Order

Reduction”. Here we further weaken the concept of Partial Order Reduction to

Property Driven Partial Order Reduction (PDPOR) — which is now property depen-

dent — in order to adapt it for a symbolic execution framework with abstraction.

Our main contribution, however, is a framework that synergistically combines state

interpolation and PDPOR so that the sum is more than its parts.

Finally, we consider reduction technique for interleavings, but now under the

assumption that processes are similarly defined via a parameterized system. The

most prominent concept for this purpose is symmetry reduction. We define a notion

of weak symmetry which is property dependent and allows for more symmetry than

the stronger notion used in the literature. Our method, when employed with an

interpolation algorithm which is monotonic, can exploit weak symmetry completely.

7.2 Concluding Remarks and Future Research

Our loop unrolling technique has overcome the fundamental problem of simulation

techniques: the “depth” issue. Now symbolic execution can in fact be asymptotically

shorter than a concrete execution. This is extremely important because the cost

of symbolic simulation is, clearly, far higher than concrete simulation. The impact

of this result is huge, as loop unrolling is commonly performed, either partially or
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fully, in a wide range of analyses.

The marriage of a greedy treatment for loop with user assertions is thought

provoking. Going greedy, we abstract away certain information, some of which might

be quite relevant. Only by doing this we ensure scalability. However, to exploit user

information, given as assertions, we need to narrow or zoom into a certain number of

program paths. These two processes are fundamentally in conflict with each other.

Investigating this fundamental conflict in a more general setting is left as future

work.

Before this thesis, POR and symmetry reduction are investigated from the for-

ward learning (or top-down) point of view. Usually, we investigate the program

syntax in order to identify similarities which will arise in the search process. This

static learning step is relatively cheap while significant pruning can be obtained.

However, such learning phase is not sensitive wrt. the target safety property. On

the other hand, in this thesis, our learning (of the interpolants) is dynamic, back-

ward, and relative wrt. the given target. Of course, it gives rise to significantly more

pruning, but at a non-trivial cost of more complicated algorithms. We believe that

in many cases, these two learning paradigms can be very much compatible. Our

work in combining state interpolation PDPOR, where PDPOR can well be reduced to

traditional POR, somewhat suggests that compatibility. Exploring this direction is

definitely an interesting future work.
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