A Framework to Synergize Partial Order Reduction with State Interpolation

Duc-Hiep Chu and Joxan Jaffar

National University of Singapore (NUS)

Nov 20, 2014

Duc-Hiep Chu and Joxan Jaffar (NUS)

Nov 20, 2014 1 / 18

- Weaken the concept of a trace by abstracting the total order into a partial order
 - Two transitions are independent if their consecutive occurrences in a trace can be swapped without changing the final state
 - Two traces are equivalent if one can be transformed into another by repeatedly swapping adjacent independent transitions
 - For each class of equivalent traces, only one representative needs to be checked

- Enable POR to work with symbolic search
- Synergize POR with State Interpolation (SI)
 - Replace the concept of trace equivalence with trace coverage
 - Weaken POR to Property Dependent POR (PDPOR)

State Interpolation: State Pruning

POR: Branch Pruning

 t_1 and t_2 emanate from the same state s_i

Definition (Trace Coverage)

Let ρ_1, ρ_2 be two traces of a concurrent program. We say ρ_1 covers ρ_2 wrt. a safety property ψ , denoted as $\rho_1 \sqsupseteq_{\psi} \rho_2$, iff $\rho_1 \models \psi \rightarrow \rho_2 \models \psi$.

- To replace the concept of trace equivalence
- The safety of one trace implies the safety of the other

Definition (Semi-Commutativity Relation)

Given a feasible derivation $s_0 \stackrel{\theta}{\Longrightarrow} s$, for all $t_1, t_2 \in \mathcal{T}$ which cannot dis-schedule each other, we say t_1 semi-commutes with t_2 after state swrt. \exists_{ψ} , denoted by $\langle s, t_1 \uparrow t_2, \psi \rangle$, iff for all $w_1, w_2 \in \mathcal{T}^*$, if $\theta w_1 t_1 t_2 w_2$ and $\theta w_1 t_2 t_1 w_2$ both are execution traces of the program, then we have $\theta w_1 t_1 t_2 w_2 \sqsupseteq_{\psi} \theta w_1 t_2 t_1 w_2$.

- To replace the concept of transition independence relation
- Traces with t_1 right before t_2 cover traces with t_1 right after t_2

Example: Independence vs. Semi-Commutativity

- $t^{\{1\}}$ is independent with $t^{\{2\}}$ wrt. deadlock verification
- $t^{\{1\}}$ is dependent with $t^{\{2\}}$ wrt. general safety property
- $t^{\{1\}}$ is semi-commutative with $t^{\{2\}}$ and vice versa wrt. safety property $\psi \equiv x + y \leq C$
- t^{1} is semi-commutative with t^{2} wrt. safety property
 ψ ≡ x − y ≤ C, but not the other way around

Example: Independence vs. Semi-Commutativity

Definition (New Persistent Set)

A set $T \subseteq \mathcal{T}$ of transitions enabled in a state *s* is *persistent in s* wrt. a property ψ iff, for all feasible derivation $s \stackrel{t_1}{\to} s_1 \stackrel{t_2}{\to} s_2 \dots \stackrel{t_{m-1}}{\to} s_{m-1} \stackrel{t_m}{\to} s_m$ including only transitions $t_i \in \mathcal{T}$ and $t_i \notin \mathcal{T}, 1 \leq i \leq m$, each transition in T *semi-commutes* with t_i after *s* wrt. \exists_{ψ} .

• Traces derived with transitions not in the persistent set first are covered by traces derived with transitions in the persistent set first

• Selective search algorithm: at each state, we only consider transitions that belong to its persistent set

Theorem

The selective search algorithm with our new definition for persistent set is sound

• Given the semi-commutativity relation, to compute new persistent sets is similar to computing old persistent sets from the independence relation

Definition (Semi-Commutative After A Program Point)

We say t_1 semi-commutes with t_2 after program point ℓ wrt. \exists_{ψ} and ϕ , denoted as $\langle \ell, \phi, t_1 \uparrow t_2, \psi \rangle$, iff for all feasible state $s \equiv \langle \ell, \llbracket s \rrbracket \rangle$ reachable from the initial state s_0 , if $\llbracket s \rrbracket \models \phi$ then t_1 semi-commutes with t_2 after state s wrt. \exists_{ψ} .

Definition (Persistent Set Of A Program Point)

A set $T \subseteq \mathcal{T}$ of transitions schedulable at program point ℓ is *persistent at* ℓ under the trace-interpolant $\overline{\Psi}$ wrt. a property ψ iff, for all feasible derivation $s_0 \Longrightarrow s$ such that $s \equiv \langle \ell, [\![s]\!] \rangle$, if $[\![s]\!] \models \overline{\Psi}$ then for all feasible derivations $s \xrightarrow{t_1} s_1 \xrightarrow{t_2} s_2 \dots \xrightarrow{t_{m-1}} s_{m-1} \xrightarrow{t_m} s_m$ including only transitions $t_i \in \mathcal{T}$ and $t_i \notin T, 1 \leq i \leq m$, each transition in T semi-commutes with t_i after state s wrt. \exists_{ψ} .

Algorithm

Assume safety property ψ and initial state s_0 function Explore($s \equiv \langle \ell, \cdot \rangle$) $\begin{array}{c} \langle 1 \rangle \\ \langle 2 \rangle \end{array}$ if (memoed($s, \overline{\Psi}$)) return $\overline{\Psi}$ /* Prune using state interpolation */ if $(s \not\models \psi)$ REPORT ERROR and TERMINATE $\langle 3 \rangle$ $\overline{\Psi} := \psi$ $\langle 4 \rangle$ $\langle T, \overline{\Psi}_{trace} \rangle := \text{Persistent}_\text{Set}(\ell)$ if $(s \models \Psi_{trace})$ $\begin{array}{c} \langle 5 \rangle \\ \langle 6 \rangle \\ \langle 7 \rangle \\ \langle 8 \rangle \\ \langle 9 \rangle \end{array}$ $\begin{array}{c} \mathsf{T}\mathsf{s} := \mathsf{T} \\ \overline{\Psi} := \overline{\Psi} \land \ \overline{\Psi}_{trace} \end{array}$ else Ts := Schedulable(s) foreach t in $(Ts \setminus Enabled(s))$ do $\overline{\Psi} := \overline{\Psi} \land \operatorname{pre}(t, \operatorname{false})$ $\langle 10 \rangle$ $\langle 11 \rangle$ foreach t in $(Ts \cap Enabled(s))$ do $s \xrightarrow{t} s'$ $\langle 12 \rangle$ /* Execute t */ $\langle 13 \rangle$ $\overline{\Psi}' := \text{Explore}(s')$ $\overline{\Psi} := \overline{\Psi} \land \operatorname{pre}(t, \overline{\Psi}')$ $\langle 14 \rangle$ $\langle 15 \rangle$ memo and return $(\overline{\Psi})$

- We assume a persistent set and an associated trace interpolant $\overline{\Psi}_{trace}$ can be computed for each program point ℓ
- If $s \models \overline{\Psi}_{trace}$, we consider only those transitions in T (line $\langle 6 \rangle$)
- Note how $\overline{\Psi}_{trace}$ affects the final (memoed) interpolant $\overline{\Psi}$ (line $\langle 7 \rangle$)

• It is about approximating the semi-commutativity relation

- Syntactic conditions (as in traditional POR)
- Semantic conditions for some classes of problem and simple properties
 - E.g. Proving bounds on resource usage
 - More in the paper
- General algorithm (opportunistically) when the weakest preconditions are available (on going)

Initially x is 0; N producers increment x; N producers double x; the consumer consumes value of x; prove $x \le N * 2^N$

	POR		SI		POR+SI		PDPOR+SI	
Ν	States	T(s)	States	T(s)	States	T(s)	States	T(s)
2	449	0.03	514	0.17	85	0.03	10	0.01
3	18745	2.73	6562	2.43	455	0.19	14	0.01
4	986418	586.00	76546	37.53	2313	1.07	18	0.01
5	_		-	_	11275	5.76	22	0.01
6	_	_		_	53261	34.50	26	0.01
7	-	-		-	245775	315.42	30	0.01

Comparing with the state-of-the-art

	POR = None		Kahlon <i>et al.</i> [2009] w. Z3			POR+SI	= SI	PDPOR+SI	
Ν	States	T(s)	Conflicts	Decisions	T(s)	States	T(s)	States	T(s)
6	2676	0.44	1608	1795	0.08	193	0.05	7	0.01
8	149920	28.28	54512	59267	10.88	1025	0.27	9	0.01
10	_	_	_	_	_	5121	1.52	11	0.01
12	_	_	_	_	_	24577	8.80	13	0.01
14	_	_	_	_	_	114689	67.7	15	0.01

	None		POR		SI		POR+SI	
Problem	States	T(s)	States	T(s)	States	T(s)	States	T(s)
din-2(a)	22	0.01	22	0.01	21	0.01	21	0.01
din-3(a)	1773	0.10	646	0.05	153	0.03	125	0.02
din-4(a)	-	_	155037	19.48	1001	0.17	647	0.09
din-5(a)	_	_	_	_	6113	1.01	4313	0.54
din-6(a)	-	_	_	—	35713	22.54	24201	4.16
din-7(a)	-	-	-	-	202369	215.63	133161	59.69
bak-2	86	0.05	48	0.03	38	0.03	31	0.02
bak-3	1755	3.13	1003	1.85	264	0.42	227	0.35
bak-4	47331	248.31	27582	145.78	1924	5.88	1678	4.95
bak-5	-	-	—	-	14235	73.69	12722	63.60

- Method by Kahlon *et al.* [2009] also performs safety verification on DP with a simpler property: Our approach is about 3 times faster
- To disprove a trivially unsafe property (b), we require only one trace (< 0.1 seconds) while they, due to SMT encoding, required a similar amount of time compared to (a)

Experiments: Concurrent Programs from Cordeiro and Fischer [2011]

Comparing with SMT-based context-bounded (column C) model checking

		Cord	leiro and Fischer [2011]	SI		PDPOR+SI	
Problem	LOC	C	T(s)	States	T(s)	States	T(s)
micro_2	247	17	1095	20201	10.88	201	0.04
stack	105	12	225	529	0.26	529	0.26
circular_buffer	111	∞	477	29	0.03	29	0.03
stateful20	60	10	95	1681	1.13	41	0.01

Questions & Answers

Definition (Equivalence)

Two traces are (Mazurkiewicz) *equivalent* iff one trace can be transformed into another by repeatedly swapping adjacent independent transitions. \Box

Definition (Trace Coverage)

Let ρ_1, ρ_2 be two traces of a concurrent program. We say ρ_1 covers ρ_2 wrt. a safety property ψ , denoted as $\rho_1 \sqsupseteq_{\psi} \rho_2$, iff $\rho_1 \models \psi \rightarrow \rho_2 \models \psi$.

Definition (Independence Relation)

 $\mathcal{R} \subseteq \mathcal{T} \times \mathcal{T}$ is an *independence relation* iff for each $\langle t_1, t_2 \rangle \in \mathcal{R}$ the following properties hold for every state *s*:

- if t_1 is enabled in s and $s \xrightarrow{t_1} s'$, then t_2 is enabled in s iff t_2 is enabled in s'; and
- 2 if t_1 and t_2 are enabled in s, then there is a unique state s'' such that $s \xrightarrow{t_1 t_2} s''$ and $s \xrightarrow{t_2 t_1} s''$.

Definition (Semi-Commutativity Relation)

Given a feasible derivation $s_0 \stackrel{\theta}{\Longrightarrow} s$, for all $t_1, t_2 \in \mathcal{T}$ which cannot dis-schedule each other, we say t_1 semi-commutes with t_2 after state swrt. \exists_{ψ} , denoted by $\langle s, t_1 \uparrow t_2, \psi \rangle$, iff for all $w_1, w_2 \in \mathcal{T}^*$, if $\theta w_1 t_1 t_2 w_2$ and $\theta w_1 t_2 t_1 w_2$ both are execution traces of the program, then we have $\theta w_1 t_1 t_2 w_2 \sqsupseteq_{\psi} \theta w_1 t_2 t_1 w_2$.

Definition (Old Persistent Set)

A set $T \subseteq \mathcal{T}$ of transitions enabled in a state *s* is *persistent in s* iff, for all feasible derivations $s \stackrel{t_1}{\to} s_1 \stackrel{t_2}{\to} s_2 \dots \stackrel{t_{m-1}}{\to} s_{m-1} \stackrel{t_m}{\to} s_m$ including only transitions $t_i \in \mathcal{T}$ and $t_i \notin \mathcal{T}$, $1 \leq i \leq m$, t_i is *independent* with all the transitions in \mathcal{T} .

Definition (New Persistent Set)

A set $T \subseteq \mathcal{T}$ of transitions enabled in a state *s* is *persistent in s* wrt. a property ψ iff, for all feasible derivation $s \xrightarrow{t_1} s_1 \xrightarrow{t_2} s_2 \dots \xrightarrow{t_{m-1}} s_{m-1} \xrightarrow{t_m} s_m$ including only transitions $t_i \in \mathcal{T}$ and $t_i \notin \mathcal{T}, 1 \leq i \leq m$, each transition in T *semi-commutes* with t_i after *s* wrt. \exists_{ψ} .

- L. Cordeiro and B. Fischer. Verifying multi-threaded software using smt-based context-bounded model checking. In *ICSE*, 2011.
- V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order reduction: An optimal symbolic partial order reduction technique. In *CAV*, 2009.