
A Rule-Based Specification of Software

Transactional Memory

Martin Sulzmann1 and Duc Hiep Chu2

1 Programming, Logics and Semantics Group, IT University of Copenhagen
Rued Langgaards Vej 7, 2300 Copenhagen S Denmark

martin.sulzmann@gmail.com
2 School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543
u0407004@nus.edu.sg

Abstract. Software Transactional Memory (STM) has the promise to
avoid the common pitfalls of locks when writing thread-based concurrent
programs. Many papers on the subject deal with low-level implementa-
tion details to support the efficient and concurrent execution of multiple
transactions. We give a rule-based specification of Software Transactional
Memory in terms of Constraint Handling Rules (CHR) which naturally
supports the concurrent execution of transactions. Such a high-level de-
scription of STM in terms of CHR has the advantage that we can easier
understand the workings of STM and we can better analyze and verify
STM. We verify correctness of a particular CHR-based STM implemen-
tation.

1 Introduction

Given the current trend towards multi-core processor architectures, program-
mers will have to write concurrent programs in order to obtain significant per-
formance improvements. There are numerous approaches for writing concurrent
programs such as threads, message-passing etc. We consider here a thread-based
model where traditionally locks have been used to avoid data races. The re-
cently popular becoming concept of Software Transactional Memory (STM) has
the promise to avoid the common pitfalls of locks (e.g. releasing/acquiring locks
too early/soon etc).

A STM transaction is a series of reads and writes to shared memory. Atomic
execution of a transaction guarantees that these reads and writes logically either
occur all at once, thus, ensuring that intermediate states are not visible to other
transactions, or they happen not at all, for example in case two atomic trans-
action make conflicting updates. The STM run-time guarantees that in case of
conflicts at least one transaction can successfully commit its updates whereas
the other transaction is retried. In short, concurrent programming in STM is
”easy”. We simply declare a program region to be executed atomically. That’s
it!

STM is provided by a number of programming languages, either directly
supported by the compiler [6] or provided as a library [7]. Much effort has been

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

atomically:: STM a -> IO a

retry :: STM ()

forkIO :: IO a -> IO ThreadId

Fig. 1. STM Operations in GHC Haskell

spent so far on efficient implementations of STM. See [14] for numerous refer-
ences. The literature on high-level STM descriptions (for example see [1, 5, 8, 9,
11, 12]) is comparatively small.

A high-level description of STM has a number of advantages. For example,
we can better explain the inner workings of STM and the numerous alternative
approaches how to detect and resolve conflicts. A formally specified and ver-
ified high-level STM description is a first step to obtain a fully verified STM
implementation.

In this paper, we give a rule-based specification of STM described in terms of
Constraint Handling Rules (CHR) [3] which is a declarative language to specify
concurrent rewritings among multi-sets of constraints. To the best of our knowl-
edge, a rule-based specification of STM appears to be novel. In our view, the ad-
vantage of concurrent CHR rewritings are that they naturally model concurrent
threads operating on shared data structures. The STM manager is implemented
by imposing stricter rules on the set of allowable read/write operations.

Specifically, we make the following contributions:

– We specify Software Transactional Memory via Constraint Handling Rules
(Section 4).

– We show that our CHR-based implementation of STM is correct by verifying
important properties such as atomicity and isolation. (Section 5).

The next section gives an introduction to STM. Section 3 shows how to repre-
sent shared memory operations in CHR. Related work is discussed in Section 6.
We conclude in Section 7.

2 STM Examples

We illustrate programming in STM using the GHC Haskell compiler (GHC) [4].
Haskell is a strongly typed language where (monadic) types are used to dis-
tinguish among the different kinds of computations/effects. Hence, we can un-
derstand the computational behavior (effects) of a Haskell function by simply
looking at its type.

STM computations are simply another form of a effect-full computation. The
type (constructor) STM represents an STM computation and the (abstract) type
TVar a represents a pointer to a (shared) memory location which holds a value
of type a. The interface to the STM library in GHC is summarized in Figure 1.

Thus, we can write a program to increment a transactional variable.

2

incSTM :: TVar Int -> STM ()

incSTM x = do { v <- readTVar x ; -- (1)

writeTVar x (v+1) } -- (2)

We use here the “do” notation to glue together little side-effecting programs
to make bigger side-effecting programs. Via v <- readTVar x we first read the
content of the transactional variable x before writing v+1 into the variable. The
whole point of STM is to guarantee that memory transactions are executed
atomically. For example,

incAtomic :: TVar Int -> IO ()

incAtomic x = atomically (incSTM x)

Atomic execution gives us the guarantee that if the value x is pointing to has
changed after the read operation at location (1), we will not commit the write
operation at location (2). Instead, we re-run the entire incSTM transaction and
only commit if the initially read value remains unchanged during the entire life
time of the transaction (that is, after execution of the write operation).

Why does atomic execution yield a IO effect? The Haskell type system dis-
allows to mix programs using different kind of effects. That is, within an STM
computation there can only be STM operations but there cannot be any other,
say, IO operations. This is a big plus of Haskell’s STM because we definitely
do not want to re-run IO operations such as ”fire missile”. However, ultimately
we want to run the transaction and make its return result available to other
program parts. Therefore, we (atomically) turn the STM computation into a IO
computation.

Here is a more realistic (and classic) example of an atomic bank transfer.

transfer :: TVar Int -> TVar Int -> Int -> STM ()

transfer fromAcc toAcc amount =

do { f <- readTVar fromAcc

; if f < amount then retry

else do { writeTVar fromAcc (f-amount)

; t <- readTVar toAcc

; writeTVar toAcc (t+amount) } }

We want to transfer amount currency units from fromAcc to toAcc. If the
balance of fromAcc is insufficient we simply retry. That is, we abort the trans-
action and try again. There is no point in re-running the transaction if fromAcc
has not changed. Hence, the transaction simply blocks until fromAcc has been
updated. Let’s see what happens in case there are concurrent transfers involving
the same set of accounts.

multiple_transfers =

do { a1 <- atomically (newTVar 100)

; a2 <- atomically (newTVar 50)

; forkIO (atomically (transfer a1 a2 40)) -- t1

; forkIO (atomically (transfer a2 a1 60)) } -- t2

We concurrently transfer 40 currency units from a1 to a2 and 60 currency
units from a2 to a1 by forking two threads. Both transfers are executed atomi-
cally which gives us the guarantee that the transfer either happens all at once or

3

not at all and none of the intermediate (transfer) steps are observable. If transfer
t2 is executed first, we block because the funds in account a2 are insufficient.
Once transfer t1 is executed, transfer t2 is re-started. As a final result, a1 holds
120 currency units and a2 holds 30 currency units. Execution of t1 before t2

leads to the same result. The behavior of the program is deterministic (which is
of course not always the case for a concurrent program).

3 Shared Memory Operations and CHR

Our first task is to model shared memory and its associated read and write
operations in CHR. We will show how to enforce atomicity and isolation of
read/write operations in the next section.

CHR manipulate a global constraint store in terms of (left-to-right) rewrite
rules. Rewrite rules can be applied concurrently as long as their left-hand sides
do not overlap. We represent shared memory locations and read/write operations
via the following CHR constraints

Cell(l,v) cell at location l storing value v

Read(l,v) reads value v from location l

Write(l,v) writes v to location l

The interaction between read/write operations and shared memory is speci-
fied via the following CHR rules.

read @ Cell(l,v1) \ Read(l,v2) <=> v1 = v2

write @ Cell(l,v1), Write(l,v2) <=> Cell(l,v2)

For example, the first rule rewrites Read(l,v2) to v1 = v2 if there is Cell(l,v1)
in the store. That is, we read from a cell by binding variable v2 to the value v1
stored in the memory cell at location l. The point to note is that not the entire
left-hand side is rewritten to the right-hand side. We only rewrite the part after
the \ but the part before \ can be shared among other concurrent reads. In the
following variant

read’ @ Cell(l,v1), Read(l,v2) <=> Cell(l,v1), v1 = v2

Cell(l,v1) is removed and immediately added to the store again. But this
rule disallows concurrent reads which are possible with read. The write rule
clearly requires exclusive access to the memory cell. We rewrite the entire left-
hand side to the right-hand side.

The abstract CHR semantics [3] gives the implementor the freedom to ap-
ply rules concurrently and in random order. However, we wish that read/write
operations belonging to the same thread of execution are processed in a fixed
sequence (following the control flow of the program). Therefore, we adopt the
CHR execution model known as the refined operational CHR semantics [2]. We
assume that memory cells are kept in the global store but read/write operations
are kept on an execution stack. In order to execute a CHR rule, we pop a con-
straint from the stack and go through the list of rules (from top to bottom)
until we find a rule which partially matches (i.e. the popped constraint forms a
partial match). Then, we try to complete the match by finding the remaining

4

left-hand side constraints in the store. Right-hand side constraints will either be
added to the store or pushed onto the execution stack. We classify constraints
into executable (for example read/write) and store (for example cell) constraints
to avoid ambiguities which constraint shall be pushed or added.

We assume that for each CHR rule the left-hand side consists of exactly
one executable constraint and an arbitrary (possibly zero) number of store con-
straints. The right-hand side consists of at most one executable constraint and
an arbitrary (possibly zero) number of store constraints. This guarantees a de-
terministic execution strategy written St E P St′ E′ where St and E are
the initial store and execution stack and St′ and E′ are the resulting store and
execution stack after at most one rule from the set P of CHR rules by finding
the first match trying the rules from top to bottom. In case none of the rules is
applicable we return St and E unchanged.

Concurrent execution of n execution stacks can be described straightfor-
wardly

St Ei P St′ E′

i for some i ∈ {1, . . . , n}

E′

j = Ej for all j ∈ {1, . . . , n} − {i}

(St E1, . . . , En) P (St′ E′

1
,, E′

n)

We arbitrarily chose one execution stack (ignoring fairness issues for brevity).

4 STM implemented in CHR

We refine the scheme outlined in the previous section to guarantee STM-style
atomic, transactional execution of a sequence of executables. We specify the
STM manager via CHR rules.

The STM run-time must guarantee that all reads and writes within a transac-
tion happen logically at once. We can easily achieve this via a ”stop-the-world”
semantics. That is, at any point there is at most one transaction active. Ob-
viously, this is not efficient because we would like to maximize the amount of
parallelism by running as many as possible transactions in parallel, typically,
one transaction per available processor core. In case transactions are (optimisti-
cally) executed in parallel the STM run-time must take care of any potential
read/write conflicts. The idea is to use for each transaction a read and a write
log.

The STM run-time records the initial value of each shared pointer in a read
log when reading the shared pointer for the first time. When writing to a shared
pointer we do not immediately perform the update, rather we record the to-be-
written value in a write log. Before we can commit the write log (i.e. actually
updating the shared pointers), we first must validate that for each shared pointer
whose value is stored in the read log, the actual value stored in the memory cell
and in the read log are still the same.

This suggests that we require the CHR constraints mentioned in Figure 2.
We assume that the value parameter of a Cell constraint is functionally defined
by the location and values of RLog and WLog constraints are functionally defined
by the transaction and location. Read and write log constraints are usually local

5

to each transaction but we keep them in the global constraint store (because the
STM run-time might want to observe the logs of two transactions).

There is obviously quite a bit of design space how to maintain the read and
write log and how to actually perform the validate and commit (for example
are parallel validates/commits allowed?). We implement STM using optimistic
reads and writes where after executing all operations all reads are validated and
if validation is successful all writes are committed. We allow for concurrent vali-
dations but there is at most one committer (represented by a single occurrence of
CommitRight in the initial store). Any validation process running concurrently
to a commit process is forced to rollback. The rules implementing this scheme
are given in Figure 2.

A description of the rules is given below. The reader should keep in mind
that for each execution stack the rules are executed from top to bottom.

– Start rules s1-3. We clear the read and write log (in case there is some
”noise” from a previous run).

– Read rules r1-3: We first check the write/read log. In case of a first initial
read, we consult the memory cell and create a read log.

– Write rules w1-2. We first check if a write log already exists and update the
write log. Otherwise, we create a write log.

– Retry rule rt. We rollback if any of the variables in the read log has changed.
The execution of a rollback is dealt with by the following rule application
step.

Ei = [Rollback(t)|]for some i ∈ {1, . . . , n}

E′

i = Einitiali E′

j = Ej for all j ∈ {1, . . . , n} − {i}

(St E1, . . . , En) P (St′ E′

1
,, E′

n)

We use Prolog style lists [x|xs] to represent an execution stack with top
element x and remaining stack elements xs. Einitiali refers to the initial
configuration of the ith stack.

– End rule e calls validation, but only if there is no committer working. The
store constraint ValidateOn(t) allows a committer to rollback a validating
transaction.

– Validation rules v1-3 test for any conflicts among the read log and actual
values stored in a cell. If there are none we commit. In order to commit
we must require the CommitRight constraint. We assume there exists only
one of such constraints in the initial store. Hence, there can be at most one
committer. Rule v4 applies if we have no commit right and/or a committer
removed the validation right (see rule c1).

– The commit rule c1 forces any concurrent validation to rollback. Rule c2

commits any write updates. Once all writes are committed we give back the
CommitRight constraint via rule c3.

6

Store constraints:

Cell(l,v) cell at location l storing value v

RLog(t,l,v) read log of t, v the initially read value

WLog(t,l,v) write log of t, v the last written value

ValidateOn(t) signals that t is validating

CommitRight has right to commit

Executables:

Start(t) t starts

Read(t,l,v) t reads value v from location l

Write(t,l,v) t writes v to location l

Retry(t) t retries

End(t) t ends => validate then commit

Internal executables: Rollback(t), Validate(t), Commit(t)
Rules:

s1 @ Start(t) \ WLog(t, ,) <=> True

s2 @ Start(t) \ Rlog(t, ,) <=> True

s3 @ Start(t) <=> True

r1 @ WLog(t,l,v1) \ Read(t,l,v2) <=> v1 = v2

r2 @ RLog(t,l,v1) \ Read(t,l,v2) <=> v1 = v2

r3 @ Cell(l,v1) \ Read(t,l,v2) <=> v1 = v2, RLog(t,l,v1)

w1 @ WLog(t,l,v1), Write(t,l,v2) <=> WLog(t,l,v2)

w2 @ Write(t,l,v) <=> WLog(t,l,v)

rt @ Cell(l,v1), RLog(t,l,v2) \ Retry(t) <==> v1 =!= v2 | Rollback(t)

e @ CommitRight \ End(t) <=> Validate(t), ValidateOn(t)

v1 @ Cell(l,v1), ValidateOn(t), Validate(t) \ RLog(t,l,v2)

<=> v1 = v2 | True

v2 @ Cell(l,v1) \ ValidateOn(t), Validate(t), RLog(t,l,v2)

<=> v1 =!= v2 | Rollback(t)

v3 @ CommitRight, ValidateOn(t), Validate(t) <=> Commit(t)

v4 @ Validate(t) <=> Rollback(t)

c1 @ Commit(t1) \ ValidateOn(t2) <=> True

c2 @ Commit(t) \ Cell(l,v1), WLog(t,l,v2) <=> Cell(l,v2)

c3 @ Commit(t) <=> CommitRight

Fig. 2. CHR-Based STM Implementation

5 Soundness of the CHR-Based STM Implementation

For simplicity, we omit the treatment of retry operations. We believe that
most of the upcoming results (atomicity, isolation correctness) straightforwardly
extend to retry operations with the exception of optimistic concurrency where
we see the potential problem that two retrying transactions (maybe indefinitely)
wait for each other.

7

We formalize some basic assumptions about execution stacks and states.

Definition 1 (Well-Defined Execution Stack and State). The content of
the initial execution stack for a transaction is well defined iff

– It starts with a Start constraint and ends with an End constraint, and

– Other operations are either Read or Write constraints

The content of the intermediate execution stack for a transaction during ex-
ecution is well defined iff

– It is empty, i.e. end of evaluation, or

– It is a suffix of the Initial Execution Stack, or

– It contains only one constraint, which either is a Rollback or Validate or
Commit constraint

A program state (St E1, . . . , En) is said to be well-defined iff

– ∀i Ei is well defined

– WLog(, l,) ∈ St ∨ RLog(, l,) ∈ St ⇒ Cell(l,) ∈ St

– ∀i Write(, l,) ∈ Ei ∨ Read(, l,) ∈ Ei ⇒ Cell(l,) ∈ St

It is straightforward to verify that if we start in a well-defined state we only
reach well-defined states.

In our first result, we establish atomicity. To avoid (indefinitely) stuck trans-
actions, we assume a round-robin scheduler where each transaction/execution
stack will be executed in a round-robin fashion.

Definition 2 (Atomicity). Atomicity means that a transaction either success-
fully commits or has to rollback.

Atomicity follows from the following auxiliary lemmas.

Lemma 1. In any possible interleaving execution, each transaction will reach a
state where its execution stack is left with only an End constraint.

Proof. (Sketch) This follows from the fact that a transaction executes Start,
Read, and Write constraints on its own without any interference from other
transactions.

A transaction might have to wait at the End constraint until CommitRight is
available before we can proceed with validation. Under a round-robin scheduling
policy and based on the upcoming lemma each transaction will eventually be
able to start validation. During validation, a transaction might be forced to
rollback if some other transaction has already progressed to the commit stage
or has already successfully committed and updated conflicting values.

Lemma 2. A transaction, which successfully validates, will eventually commit
successfully and thus release/add CommitRight to the store which then allows
other transactions to start validation.

8

Proof. (Sketch) Rule c1 could not be fired infinitely as rule e prevents any
transaction from entering validation stage when CommitRight has already been
acquired. Therefore, committing transaction will always make progress and even-
tually finish execution.

In summary, under a round-robin scheduler each transaction is always able
to start validating. Then, the transaction will either be forced to rollback or
successfully validates and commits.

Theorem 1 (Atomicity of CHR-Based STM). Our implementation guar-
antees atomicity.

Definition 3 (Isolation). Isolation means that the execution of transactions
is serializable.

Theorem 2 (Isolation of CHR-Based STM). Our implementation guaran-
tees isolation.

Proof. (Sketch) W.l.o.g., we only consider the case of two active transactions.
For this case, isolation means the following:

Suppose St E1, E2
∗

P St′ [], []. Then, either (1) St E1
∗

P St′′ [] and
St′′ E2

∗

P St′ [], or (2) St E2
∗

P St′′′ [] and St′′′ E1
∗

P St′ [] where
St′′ and St′′′ are some intermediate stores.

St E1, E2
∗

P St′ [], [] implies that both transactions successfully commit.
W.l.o.g., we assume that transaction 1 committed earlier than transaction 2, case
(1). Hence, we can assume that St E1, E2

∗

P St′′ [], [End(t2)]
∗

P St′ [], [].
The intermediate step represents the situation where transaction 1 has already
committed and transaction 2 is just about to validate.

We proceed by considering the following two cases. In St′′ [], [End(t2)]
∗

P

St′ [], [], validation of transaction 2 either leads to a rollback or there is no
rollback.

– Rollback: This implies that a conflict took place. Hence, we had to restart
the entire transaction 2 in the derivation St′′ [], [End(t2)]

∗

P St′ [], [].
Hence, we can easily verify that the serialized execution of transaction 1 and
then transaction 2 leads to the same result St′. That is, St E1

∗

P St′′′ []
and St′′′ E2

∗

P St′ [] where St′′′ is derived from St′′ by discarding all of
transaction 2’s read and write logs.

– No rollback: This implies that transaction 1 and transaction 2 have no (data)
conflicts. Hence, their operations are non-interfering. In terms of CHR, their
rule applications are joinable (lead to common states). Recall that we as-
sume the refined operational CHR semantics [2] which enforces determinis-
tic, sequential rule execution (per stack/transaction). Hence, we can execute
transaction 1 before executing transaction 2 which then leads to the same
result St′.

Definition 4 (Optimistic Concurrency of CHR-Based STM). Optimistic
Concurrency means that at least one transaction commits.

9

Theorem 3. Our implementation guarantees optimistic concurrency.

Proof. The proof proceeds by contradiction. Assume that no transaction is able
to commit. Suppose transaction i which can not commit. Under a round-robin
scheduler this implies that transaction i is (eventually) forced to rollback. There
are only two possible cases: (1) Some transaction has successfully updated values
seen by transaction i, or (2) some transaction has acquired CommitRight while
transaction i is validating.

In both cases, there is a transaction that at least has already proceeded to
the commit stage. By Lemma 2, that transaction successfully commits. Contra-
diction.

Theorem 4 (Correctness of CHR-Based STM). If a transaction commits
successfully, the store reflects correctly all the reads/writes performed by that
transaction.

Proof. This follows from two facts. Our read/write rules ensure that the RLog

and WLog constraints record all effects of the read/write operations. The commit
rules ensure that changes are reflected in Cell constraints.

6 Related Work

Previous work [1, 5, 8, 9, 11, 12] on high-level STM descriptions has similar goals
(i.e. to verify correctness of STM implementations) but differs significanly from
our work in terms of the formalism used. For example, the work in [11] uses
operational semantics and [8] uses Haskell as a meta specification for describing
the behavior of STM. To the best of our knowledge, we are the first to give a
rule-based specification of STM, Concretly, we use CHR to specify STM.

Interestingly, in our own previous work [13] we have employed STM to effi-
ciently implement CHR. In this light, the present work shows that both concur-
reny models, STM and CHR, are equally expressive and can be used to encode
each other.

7 Conclusion and Future Work

We have formalized a particular form of STM in terms of CHR. Our STM im-
plements a lazy conflict detection scheme which allows for parallel validation of
read sets but only supports at most one committer at a time. We could verify
important properties such as atomicity and isolation. We have also implemented
the described STM in terms of a Haskell-CHR library and will release the source
code in the near future (via the Haskell platform ’hackage’).

In future work, we plan to consider further variants of STM and their CHR-
based formulation. For example, the high-level CHR description of STM makes
it possible to customize STM to domain-specific settings. An interesting aspect
is how/whether we can compose different STM formulations, i.e. CHR rule sets,
while maintaining atomicity and isolation.

10

In another direction, we want to exploit the close connection between CHR
and concurrent logic frameworks [10] to mechanically verify our so far hand-
written proofs.

Acknowledgments

We thank the LOPSTR’08 reviewers of the pre-proceedings round for their feed-
back.

References

1. A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck. Verifying
correctness of transactional memories. In Proc. of FMCAD’07, pages 37–44. IEEE
Computer Society, 2007.

2. G. J. Duck, P. J. Stuckey, M. J. Garćıa de la Banda, and C. Holzbaur. The refined
operational semantics of Constraint Handling Rules. In Proc of ICLP’04, volume
3132 of LNCS, pages 90–104. Springer-Verlag, 2004.

3. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic

Programming, Special Issue on Constraint Logic Programming, 37(1-3):95–138,
1998.

4. Glasgow haskell compiler home page. http://www.haskell.org/ghc/.
5. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In

Proc. of PPOPP’08, pages 175–184. ACM Press, 2008.
6. T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory

transactions. In Proc. of PPoPP’05, pages 48–60. ACM Press, 2005.
7. M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing

software transactional memory. SIGPLAN Not., 41(10):253–262, 2006.
8. L. Hu and G. Hutton. Implementing software transactional memory, correctly.

Presented at TFP’2008.
9. F. Huch and F. Kupke. A high-level implementation of composable memory trans-

actions in Concurrent Haskell. In Proc. of IFL’05, volume 4015 of LNCS, pages
124–141. Springer-Verlag, 2005.

10. P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic Concurrent Linear
Logic Programming. In Proc. of PPDP’05, pages 35–46, 2005.

11. K. F. Moore and D. Grossman. High-level small-step operational semantics for
transactions. In Proc. of POPL’08, pages 51–62. ACM Press, 2008.

12. M. L. Scott. Sequential specification of transactional memory semantics, 2006.
Proc. of TRANSACT’06: First ACM SIGPLAN Workshop on Languages, Compil-
ers, and Hardware Support for Transactional Computing.

13. M. Sulzmann and E. S. L. Lam. Parallel execution of multi set constraint rewrite
rules. In Proc. of PPDP’08, 2008.

14. Transactional memory bibliography. http://www.cs.wisc.edu/trans-
memory/biblio/index.html.

11

