A Complete Method for Symmetry
Reduction in Safety Verification

Duc-Hiep Chu and Joxan Jaffar
National University of Singapore

Motivation

* Settings:
— Concurrent program is defined parametrically
— The number of processes is known (n)
* The interleaving space contains many
symmetric subtrees
— A subtree might have up to n! symmetric images

* Consequence: If symmetry reduction is
properly exploited, the benefit is HUGE

Background

* Given an n-process system, let
— | =[1 ... n] denote its process indices
— 1t denote some permutation on |

A permutation mt acts on object (formula) F by
simultaneously replacing each occurrence of index i by
1t(i)

Eg.Letn=2,m={1->2,2->1}.

m(id, < 3Aid, > 4 Ax = 10) = (id, < 3Aid, > 4 Ax = 10)

— 1l denote the inverse of 1t

Traditional Symmetry Reduction

Strong Symmetry

Def: Given safety condition ¥ such that rt(Y) is
equivalent to Y, state s is strongly m-similar to s’ if :

1. (s) =+
2. for each transitiont, s --t-->d, we have
s’ --m(t) --> d’, d is strongly mt-similar to d’
3. for each transitiont’, s’ --t' -->d', we have
s -- ti(t’) -->d, d is strongly mt-similar to d’

Traditional Symmetry Reduction

* Detecting 2. and 3. is hard
* Rely on all processes being identical

Example (Increment)

t1 : sum += 1 to : sum += 1

Example (Increment)

n={1->2,2->1}

sum = 2((1,1)#1 (1,1)#2) sum = 2

Example (Increment)

n={1->2,2->1}

We don’t always have identical
processes

process(id) {
if (id == master id) {
/* code for master process */
else {
/* code for slave processes */

}
}

* |tis an unreasonable assumption
— Excludes many systems

Related Work

Traditional symmetry reduction methods exploit
perfect symmetry, relying on the fact that all
component processes are identical

[Emerson, 99] considered near and rough
symmetry, which later generalized to virtual
symmetry [Emerson, 00]. No implementation
provided

[Sistla, 04] and [Wahl, 07] are closest to us, in
allowing behaviors of processes to range from
totally identical to arbitrarily divergent

All of them attempt to capture strong symmetry

Our Symmetry Reduction

Weak Symmetry (property driven)

Def: Given safety condition ¥ such that rn(Y) is
equivalent to |, state s is weakly rt-similar to s’ if :

1. m(program point of s) = program point of §’
2. s models ¢ iff " models rt(y)
3. for each transitiont, s --t-->d, we have
s’ --m(t) -->d’, d is weakly t-similar to d’
3. for each transitiont’, s’ --t’ -->d', we have
s -- ti(t’) -->d, d is weakly mt-similar to d’

State Interpolation

A and B are sibling sub-trees (same program point, different context)

LA O

12

State Interpolation

A and B are sibling sub-trees (same program point, different context)

13

State Interpolation

A and B are sibling sub-trees (same program point, different context)

Generalize A (to A’) while preserving safety

14

Pruning with Weak Symmetry

A (program point p,) and B (program point pg) are siblings
and nt(p,) = pg i-e. symmetric program points

LA O

15

Pruning with Weak Symmetry

A (program point p,) and B (program point pg) are siblings
and nt(p,) = pg i-e. symmetric program points

Generalize A (to A’) while preserving safety
Apply tto A’

16

Our Language

* Allow the use of variable id
— id is initialized to a unique value in each process
— for simplicity, id ranges from 1 ... n
— value of id can not be changed

* The behaviors of processes can range from
totally identical to arbitrarily divergent

Example (Weak Symmetry)

sum = 0
process(id) {
sum += id

}
©

‘tl :sum += id; to : sum += idy

Example (Weak Symmetry)

sum =1

{sum < 3}
SumS@ (1,1)#2) sum = 3

Example (Weak Symmetry)

t lo
{sum < 3 A sum Z3 —idsy} {sum < 3 sum < 3 —idy}
sum = 1((1,0) sum = 2
to
{sum < 3}
sum = 3@ sum = 3

20

Example (Violation of Symmetry)

x = 0;
process(1id) {
1

1f (1d == 1) x++;

* [nstantiated to n = 3 processes
e Safety: x<2

Example (Violation of Symmetry)
id, =1,id,=2,id, =3
x<2 Aids # 1TAid, # 1

¢t

Safety: =z <2
¢1E{$<2/\id3751/\2'd27é1

Note: ¢} = {x < 1 Aidy =1 Nids # 1}

22

Completeness

* Completeness means that “given two states
which are weakly symmetric, we will not
explore them both in our search space”

e pre(t, ¢) computes the precondition wrt.
postcondition ¢ and transition t

Def: The precondition operator pre is said to be
monotonic wrt. transition t if for all @,, @,: if @,
is weaker than @, then pre(t, @,) is weaker than

pre(t, ¢,)

Completeness

Theorem: Our symmetry reduction is complete
wrt. weak symmetry if our precondition
operator is monotonic wrt. every transition

Experiments
Sum-Of-Ids

_ Complete Symmetry Reduction SPIN (w/t Symmetry Reduction)

#Processes Visited Subsumed
10 57 45
20 212 190
40 822 780
100 5052 4950

T(s) Visited Subsumed T(s)
0.02 6146 4097 0.03
0.04 115334338 9437185 69.70
0.37 - - -
22.09 - - -

25

Experiments
Reader-Writer Protocol

Complete Symmetry Reduction | Lazy Symmetry Reduction
[Wahl, CAVO07]

#Readers #Writers Visited Subsumed T(s) Abstract States T(s)

2 1 35 20 0.01 9 0.01

4 2 226 175 0.19 41 0.10

6 3 779 658 9.93 79 67.80

8 4 1987 1750 3.23 165 81969.0
10 5 4231 3820 9.21 - -

26

Experiments
Bakery Algorithm

_ Complete Symmetry Reduction State Interpolation

Processes Visited Subsumed T(s) Visited Subsumed T(s)
3 65 31 0.10 265 125 0.43
4 182 105 0.46 1925 1089 5.89
5 505 325 2.26 14236 9067 74.92
6 1423 983 11.10 - - -

27

Summary

* We weaken the notion of symmetry
— Property-driven

* Aninterpolant for a subtree can be permuted
to prune symmetric subtrees

* Our symmetry reduction algorithm is
complete wrt. the notion of weak symmetry

