A *Complete* Method for Symmetry Reduction in Safety Verification

<u>Duc-Hiep Chu</u> and Joxan Jaffar National University of Singapore

Motivation

- Settings:
 - Concurrent program is defined parametrically
 - The number of processes is known (n)
- The interleaving space contains many symmetric subtrees
 - A subtree might have up to n! symmetric images
- Consequence: If symmetry reduction is properly exploited, the benefit is HUGE

Background

- Given an n-process system, let
 - I = [1 ... n] denote its process indices
 - $-\pi$ denote some *permutation* on I

A permutation π *acts* on object (formula) F by simultaneously replacing each occurrence of index i by $\pi(i)$

```
E.g. Let n = 2, \pi = \{1 \rightarrow 2, 2 \rightarrow 1\}.

\pi(id_1 < 3 \land id_2 > 4 \land x = 10) = (id_2 < 3 \land id_1 > 4 \land x = 10)
```

 $-\pi^{-1}$ denote the inverse of π

Traditional Symmetry Reduction

Strong Symmetry

Def: Given safety condition ψ such that $\pi(\psi)$ is equivalent to ψ , state s is strongly π -similar to s' if :

- 1. $\pi(s) = s'$
- 2. for each transition t, s -- t --> d, we have $s' -- \pi(t) --> d'$, d is strongly π -similar to d'
- 3. for each transition t', s' -- t' --> d', we have $s -- \pi^{-1}(t')$ --> d, d is strongly π -similar to d'

Traditional Symmetry Reduction

- Detecting 2. and 3. is hard
- Rely on all processes being identical

Example (Increment)

Example (Increment)

$$\pi = \{1 \rightarrow 2, 2 \rightarrow 1\}$$

$$sum = 1$$

$$t_1$$

$$t_2$$

$$sum = 1$$

$$t_2$$

$$sum = 2$$

$$(1,1)\#1$$

$$sum = 2$$

$$(1,1)\#2$$

$$sum = 2$$

Example (Increment)

We don't always have identical processes

```
process(id) {
   if (id == master_id) {
      /* code for master process */
   else {
      /* code for slave processes */
   }
}
```

- It is an unreasonable assumption
 - Excludes many systems

Related Work

- Traditional symmetry reduction methods exploit perfect symmetry, relying on the fact that all component processes are identical
- [Emerson, 99] considered near and rough symmetry, which later generalized to virtual symmetry [Emerson, 00]. No implementation provided
- [Sistla, 04] and [Wahl, 07] are closest to us, in allowing behaviors of processes to range from totally identical to arbitrarily divergent
- All of them attempt to capture strong symmetry

Our Symmetry Reduction

Weak Symmetry (property driven)

Def: Given safety condition ψ such that $\pi(\psi)$ is equivalent to ψ , state s is weakly π -similar to s' if :

- 1. π (program point of s) = program point of s'
- 2. s models ψ iff s' models $\pi(\psi)$
- 3. for each transition t, s -- t --> d, we have $s' -- \pi(t) --> d'$, d is weakly π -similar to d'
- 3. for each transition t', s' -- t' --> d', we have $s -- \pi^{-1}(t') --> d$, d is weakly π -similar to d'

State Interpolation

A and B are sibling sub-trees (same program point, different context)

State Interpolation

A and B are sibling sub-trees (same program point, different context)

State Interpolation

A and B are sibling sub-trees (same program point, different context)

Generalize A (to A') while preserving safety

Pruning with Weak Symmetry

A (program point p_A) and B (program point p_B) are siblings and $\pi(p_A) = p_B$ i.e. symmetric program points

Pruning with Weak Symmetry

A (program point p_A) and B (program point p_B) are siblings and $\pi(p_A) = p_B$ i.e. symmetric program points

Generalize A (to A') while preserving safety Apply π to A'

Our Language

- Allow the use of variable id
 - id is initialized to a unique value in each process
 - for simplicity, id ranges from 1 ... n
 - value of id can not be changed
- The behaviors of processes can range from totally identical to arbitrarily divergent

Example (Weak Symmetry)

```
sum = 0
process(id) {
     sum += id
                       id_1 = 1, id_2 = 2
               t_1: \mathtt{sum} \mathrel{+=} \mathtt{id}_1
                                                        t_2: \mathtt{sum} \mathrel{+=} \mathtt{id}_2
```

Example (Weak Symmetry)

Example (Weak Symmetry)

Example (Violation of Symmetry)

```
x = 0;
process(id) {
  if (id == 1) x++;
}
```

- Instantiated to n = 3 processes
- Safety: x < 2

Example (Violation of Symmetry)

$$id_1 = 1$$
, $id_2 = 2$, $id_3 = 3$

Note:
$$\phi'_1 \equiv \{x < 1 \land id_1 = 1 \land id_3 \neq 1\}$$

Completeness

- Completeness means that "given two states which are weakly symmetric, we will not explore them both in our search space"
- pre(t, φ) computes the precondition wrt.
 postcondition φ and transition t

Def: The precondition operator pre is said to be monotonic wrt. transition t if for all φ_1 , φ_2 : if φ_1 is weaker than φ_2 then pre(t, φ_1) is weaker than pre(t, φ_2)

Completeness

Theorem: Our symmetry reduction is *complete* wrt. weak symmetry if our precondition operator is monotonic wrt. every transition

Experiments Sum-Of-Ids

	Complete Symmetry Reduction			SPIN (w/t Symmetry Reduction)			
#Processes	Visited	Subsumed	T(s)	Visited	Subsumed	T(s)	
10	57	45	0.02	6146	4097	0.03	
20	212	190	0.04	115334338	9437185	69.70	
40	822	780	0.37	-	-	-	
100	5052	4950	22.09	-	-	-	

Experiments Reader-Writer Protocol

		Complete Symmetry Reduction			Lazy Symmetry Reduction [Wahl, CAV07]	
#Readers	#Writers	Visited	Subsumed	T(s)	Abstract States	T(s)
2	1	35	20	0.01	9	0.01
4	2	226	175	0.19	41	0.10
6	3	779	658	9.93	79	67.80
8	4	1987	1750	3.23	165	81969.0
10	5	4231	3820	9.21	-	-

Experiments Bakery Algorithm

	Complete Symmetry Reduction			State Interpolation		
# Processes	Visited	Subsumed	T(s)	Visited	Subsumed	T(s)
3	65	31	0.10	265	125	0.43
4	182	105	0.46	1925	1089	5.89
5	505	325	2.26	14236	9067	74.92
6	1423	983	11.10	-	-	-

Summary

- We weaken the notion of symmetry
 - Property-driven
- An interpolant for a subtree can be permuted to prune symmetric subtrees
- Our symmetry reduction algorithm is complete wrt. the notion of weak symmetry