Symbolic Simulation on Complicated
Loops for WCET Path Analysis

Duc-Hiep Chu and Joxan Jaffar
National University of Singapore

Natural Modularization of
Static WCET Analysis

— [Borrowed from Absint]

CFG Bwlder

Loop Tra nsfo

" iag

D H Chu and J Jaffar 2

Loop bounds

ILP Generator Infeasible paths
LP-Solver

Path Analysis using ILP

* Simple and elegant

* Manual: users to provide loop/recursion

bounds and additional constraints to exclude
infeasible paths

— Information used is not verified

— This task is not always trivial
e Can be error-prone

* Users might not know of such information

Our Target

CFG Builder

v
Loop Transfo No Annotations!

Symbolic
Simulation

D H Chu and J Jaffar 4

Challenge 1: Complicated Loops

 Some patterns for complicated loops:
— Triangular loops
— Down-sampling
— Amortized loops
— No closed form (but terminating)

* They challenge the aggregation process

* Two options:
— Unrolling: accurate but not scalable in general

— Loop Abstraction (e.g. loop invariant or fixed-point
computation): more scalable but not accurate

Challenge 2: Infeasible Paths

* Good detection of infeasible paths concerns
path-sensitivity

* |In theory, intractably many infeasible paths
— Providing annotations for them is not plausible
* In ILP practice

— Hard to come up with annotations for infeasible
paths which stretch over loops and nested loops

Our Approach

Symbolic simulation as a brute-force method
— Loops are unrolled
— We attempt path-sensitivity
— Similar to running a program but we are proving it
— Can be widely applied to different programs and problems

Question: how to make this scalable? In general, symbolic
simulation is:

— At least proportional to the execution of the WCET path
— Very expensive as
Estimated #states = 2 M ##states_per_average_ground_run

In short, we need to deal with the state explosion problem
of the symbolic tree in an ANALYSIS problem

Empirically, we overcome both issues mentioned above

D H Chu and J Jaffar

Our Approach

* |teration Abstraction
— Path merging (as in [Lundqvist99] and [Gustaffson05])
— We only perform at the end of each loop body
— We use polyhedral domain

* Compounded Summarization with Interpolation
— We are summary-based
— Interpolants tell us when we can safely reuse
— Compounded both horizontally and vertically

e Witness Path

— Witness path conditions tell us when we can precisely
reuse (i.e. strengthen the interpolant)

Naive Simulation Does Not Scale

D H Chu and J Jaffar

lteration Abstraction

Multiple contexts are merged into one A
A
A

->€

D H Chu and J Jaffar

10

lteration Abstraction

Similar to abstract execution[Gustafsson05]
— They used interval domain

— We use polyhedral domain (convex hull)

* First introduced to program analysis by
[P. Cousot and N. Halbwachs, POPL’78]

In general, we might lose information due to
abstraction

Fortunately, most variables affecting control flows of
the program are transformed linearly

Unresolved problems:
— The depth of the tree is still the depth of the longest path
— # paths are still exponential wrt # branches outside loops

D H Chu and J Jaffar 11

Summarization with Interpolation

A and B are sibling sub-trees (same program point, different context)

LA O

D H Chu and J Jaffar

12

Summarization with Interpolation

A and B are sibling sub-trees (same program point, different context)

D H Chu and J Jaffar

13

Summarization with Interpolation

A and B are sibling sub-trees (same program point, different context)

X X X

Generalize A (to A’) while preserving
infeasibility: B has no more feasible paths than A

D H Chu and J Jaffar

14

Witness Paths

SUBSUMED

— Witness path depicting best found solution for sub-tree A
— Mirror path in sibling sub-tree B
— Though B can safely re-use the analysis of A, best path of A is in fact infeasible in B

D H Chu and J Jaffar

Breadth-wise Reuse of Summarization

* Use the summarization to produce the

solution

t=t0+ 100

The condition for reuse is determined by interpolation and witness paths

D H Chu and J Jaffar 16

Reuse of Summarization

e The leaves of the sub-tree need not be terminal

N

continue

We need cut-off points and continuation contexts

D H Chu and J Jaffar

17

Reuse of Summarization

* To produce continuation context, we require the
notion of Abstract Transformer

— Gives an (abstract) input-output relationship for a
finite sub-tree

— Natural cut-off points:
* Ending point of loop body
* Ending point of function body

— Again we compute it using hulling in polyhedral
domain

E.g. <1>if (*) x++; else x += 2; <2>
Abstract transformer A=x+1<x <x+2

Depth-wise Reuse of Summarization

* Reuse is not just for sibling

—A—

This includes an abstract transition
to produce continuation context

Yes, we can reuse here

Reuse of a summarization —>

Continue our analysis

D H Chu and J Jaffar

Depth-wise Reuse of Summarization

* Very often, the analysis tree for an un-nested
loop looks like this ﬂ

Depth-wise Loop Compression

 We just showed the benefits of abstracting
and summarizing each iteration of a loop

* How about summarizing the whole loop?

— |t benefits when dealing with nested loops

D H Chu and J Jaffar

21

Depth-wise Loop Compression

4
3
. ’/I \\\ 2
A serialization of summarizations m
for a single program point ' ‘
4 will be reused in case of rectangular loops 1"
0,1,2,3 will likely be reused in case of
non-rectangular loops 0
NN

cut-off point of the outer loop

D H Chu and J Jaffar 22

Depth-wise Loop Compression

This is the case for bubblesort
(a classic example for triangular loop)

We discover the whole triangle by just (fully)
exploring the first iteration of the outer loop

The number inner loop’s iterations being
explored is just linear (Note: only one is fully
explored, while the rest are partially explored) FAIRN

D H Chu and J Jaffar

Triangular Loop

 We have done well for this type of triangle

 How about this? (e.g. insertsort)

D H Chu and J Jaffar

24

Triangular Loop

It is still linear i

D H Chu and J Jaffar

25

Experimental Results

Benchmark | Size Complexity WCET States [Exact?
Parameter

n=25 1648 135 233

bubblesort n=50 O(n”2) 6423 260 701 Y N
n=100 25348 510 2438

expint NA - 859 519 8247 Y Y
n=8 181 111 446
n=16 379 176 927

fft1 n=32 O(nlogn) 791 287 2197 Y Y
n=64 1661 495 6818

fir NA - 760 108 387 Y Y
n=25 1120 159 387

insertsort n=50 O(n”2) 4120 309 1504 Y N
n=100 15745 609 7542

j_complex NA - 534 165 491 N N
n=5 2655 63 59

ns n=10 O(n"4) 35555 103 116 Y Y
n=20 522105 183 344

nsichneu NA - 281 334 15542 Y N

ud NA - 819 487 1137 Y Y
26

Experimental Results

Benchmark | Size Complexity | WCET States [Exact?
Parameter

n=50 394 95 287

amortized n=100 O(n) 792 186 1035 Y Y
n=200 1590 339 4057
n=50 2199 259 497

two_shapes n=100 O(n”2) 8149 509 3235 Y Y
n=200 31299 1009 19839
n=25 3904 129 59

non_deter n=50 O(n”2) 15304 242 116 Y Y
n=100 60604 467 344

tcas NA - 99 6020 15925 Y Y

D H Chu and J Jaffar 27

Exactness

* Meaning?
— |t’s the best a path analyzer can do

— Implication: want a better bound? improve our
low-level analysis

 Proof?
— Sometimes it is achievable

D H Chu and J Jaffar

28

Proof of Exactness

e Case 1: Single-path programs

— Power of the abstract domain and/or the theorem
prover plays an important role

e Case 2: Multi-path programs

— The solver is complete wrt the witness condition of
the worst-case path and

— The worst-case path involves no “destructive merges”
* No loop or no path merging due to loop
* There are path merging, but they are not lossy ([Thakur08])

Conclusion

* Fully automated WCET path analysis

— The bound is proved safe wrt to what the low-
level analysis component has produced

* The complexity of the analysis can be
asymptotically better than a ground run

* Many times, we get exact bound, even for
programs with complicated loops

— Sometimes we have a proof of exactness

Thank you!

Question?

