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ABSTRACT
We address the Worst-Case Execution Time (WCET) Path
Analysis problem for bounded programs, formalized as dis-
covering a tight upper bound of a resource variable. A key
challenge is posed by complicated loops whose iterations ex-
hibit non-uniform behavior. We adopt a brute-force strategy
by simply unrolling them, and show how to make this scal-
able while preserving accuracy.

Our algorithm performs symbolic simulation of the pro-
gram. It maintains accuracy because it preserves, at critical
points, path-sensitivity. In other words, the simulation de-
tects infeasible paths. Scalability, on the other hand, is dealt
with by using summarizations, compact representations of
the analyses of loop iterations. They are obtained by a judi-
cious use of abstraction which preserves critical information
flowing from one iteration to another. These summariza-
tions can be compounded in order for the simulation to have
linear complexity : the symbolic execution can in fact be
asymptotically shorter than a concrete execution. Finally,
we present a comprehensive experimental evaluation using
a standard benchmark suite. We show that our algorithm is
fast, and importantly, we often obtain not just accurate but
exact results.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; B.2.2 [Performance Analysis and Design
Aids]: Verification,Worst-case analysis

General Terms
Reliability, Verification, Algorithms

Keywords
WCET, Path Analysis, Interpolation, Summarization

1. INTRODUCTION
Programs use limited physical resources. Thus determin-

ing an upper bound on resource usage by a program is often
a critical need. Static estimation of the Worst-Case Exe-
cution Time (WCET) has traditionally been important in
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the design of real-time systems. Static methods emphasize
safety by producing bounds on the execution time, guaran-
teeing that the execution time will not exceed these bounds.

A main issue in WCET analysis is to avoid pessimism
while being safe in timing evaluation. Ideally, WCET es-
timation method should, given an input program, produce
a tight estimate of the upper-bound of the actual WCET.
But first, we need a timing model of the hardware platform.
Indeed, such micro-architecture modeling for low-level anal-
ysis is non-trivial and it is almost impossible to achieve exact
WCET estimates in CPU cycles. Second, it is crucial to es-
timate accurately bounds for loops and eliminate infeasible
paths from bound calculation, especially in the presence of
nested loops. This can be partially addressed by requiring
user-provided path annotations and loop bound information.
Apart from considerable effort and error-proneness, some-
times the user may not actually know such information. A
more attractive solution is to automatically detect infeasible
paths and derive loop bounds through static path analysis
methods [2, 12, 16, 17].

Path analysis in general is performed separately from low-
level analysis. Theiling et al. [35], though their path anal-
ysis is not fully automated, emphasize that precise WCET
prediction can be achieved by doing low-level analysis and
path analysis separately. As a matter of fact, our path
analysis is performed separately from low-level analysis. It
is intended to be combined with some low-level analysis
(e.g. [35]), which gives a worst-case timing for each basic
block.

When path analysis is performed separately from low-level
analysis, a key issue is the aggregation phase, lifting ba-
sic block timings (returned by some low-level analysis) to
the global timing. At this phase, the information about in-
feasible paths and loop bounds is crucial because it allows
us to exclude certain accumulations of basic block timings
which do not correspond to valid paths. This paper adopts
symbolic simulation with loop unrolling for automatic and
precise detection of infeasible paths and loop bounds.

Infeasible path detection concerns path-sensitivity: with-
out it, accuracy is seriously hampered; but with it, how
do we make any algorithm scale given the subsequent ex-
plosion in the search space of the symbolic execution? For
instance, in Fig. 1(e), the WCET of a piece of code depends
on the values of its input variables. The fact of whether an
analyzer can capture no/partial/full information about the
input variables might heavily affect its timing prediction.
Similarly, in Fig. 1(f), the paths (a,c) and (b,d) are mutu-
ally exclusive. Excluding those paths from bound calcula-
tion might increase the analysis precision significantly [2].

We next discuss the inherent difficulties posed by com-
plicated loops. Scalability is discussed in the later sections.
Here we simply point out some technical aspects of programs
that exacerbate the already difficult problem.



for (i = 0; i < n-1; i++)
for (j = 0; j < n-1-i; j++) {

/* test_and_swap */
}

for (i = 0; i < n; i++)
for (j = 0; j < n-i; j++) {

/* do_something */
i++;

}

for (i = 0; i < 10; i++) {
if (i==4) { /* a */ }
/* b */

}

(a) (b) (c)

while (n > 1) {
if (n % 2 == 0)

n = n / 2;
else n = 3 * n + 1;

}

if (input == 0) { /* do_a */ }
else { /* do_b */ }

if (E < 0) { condition = 0; } /* a */
else { condition = 1; } /* b */
if (condition) result = x / y; /* c */
else result = y; /* d */

(d) (e) (f)

Figure 1: Challenging program patterns

• Non-rectangular loops: we often see triangular loops in
sorting algorithms. Fig. 1(a) shows bubblesort program. The
number of iterations of the inner loop is dependent on the
specific iteration of the outer loop. In bounding the total
number of the inner loop iterations in this program, general
techniques on a parametric bound would happily accept n2

as a good bound. Nonetheless, we target the exact bound
n(n − 1)/2 for each known value of n.

• Amortized loops [15]: in Fig. 1(b), the outer loop counter
being manipulated inside the inner loop makes it hard to
give a tight bound (linear instead of quadratic).

• Down-sampling code: predicting accurately the loop tim-
ing is hard if one part of its body is executed less often
than the rest of the body (Fig. 1(c)). When the timing for
/* a */ is significantly larger than the timing for /* b */,
the amount of overestimation might become unacceptable.

• Closed-form is not always possible: a WCET analysis
can produce symbolic expressions which are solved (closed-
form) by using off-the-shelf Computational Algebraic Sys-
tems (CAS). However, to obtain a closed-form can be unre-
alistic [37], as the loop counter can be manipulated nonde-
terministically in each iteration. An extreme example is the
famous Collatz problem in Fig. 1(d) [1]. It is desirable that
a WCET analyzer still return something safe for a termi-
nating program (e.g. Collatz problem with a known value
of n), even when its closed-form cannot be deduced.

1.1 Our Contributions and Related Work
To the best of our knowledge, our work is the first fully au-

tomated general path analysis method which attempts path-
sensitivity and is able to discover and prove tight upper
bound of a resource variable, even in the presence of compli-
cated patterns such as non-rectangular and amortized loops,
and down-sampling code even when a closed-form cannot be
obtained by traditional CAS. By prove here we mean that
all infeasible paths detected and used in our analysis are
checked by the underlying theorem prover. In the end, we
produce not only a bound but also a proof tree so that a
third party verifier can certify that the result is safe.

Our method is brute-force as loops are unrolled. It is dif-
ferent from traditional abstract interpretation (AI) [6] meth-
ods dealing with bounds in a way that it never attempts to
discover invariants for loops. Instead, we ensure constraints
which are not modified in divergent ways can be propagated
and preserved through loops. I.e variant effects caused by
the loop bodies are abstracted and summarized using a poly-
hedral domain [7]. It turns out that this approach is very
successful in maintaining flow information stretching across
loop-nesting levels and between different loops. The reason
is that, though a loop can be complicated, variant effects
from different paths in the loop body to variables affecting
the control flow of the program, usually agree upon one ab-
stract value. Thus abstraction is not lossy and crucial flow
information can be captured precisely. Experimental results
show that, very often, we can come up with not only the ex-

act timing for a benchmark, but also its exact ending context
(or its best approximation wrt. the abstract domain used).

A significant work on WCET analysis employing symbolic
simulation is done by Lundqvist et al. [24]. There low-level
analysis and path analysis are combined in one integrated
phase. However, that approach has several problems. First,
it can only cope with a very simple abstract domain. This
leads to limitations in detection of infeasible paths. Second,
for the same reason, the approach has a termination issue
with some common programming patterns (see the discus-
sion in [24]). Finally, the analysis time is always at least pro-
portional to the actual execution time of the input program.
“It leads to a very long analysis since simulation is typically
orders of magnitudes slower than native execution” [39].

Indeed, exhaustive symbolic execution is very expensive
because of both the breadth and depth of the resulting tree.
To address the breadth issue, one requires a notion of merge.
The analysis precision is then heavily affected by the power
of the employed abstract domain. E.g. the works by Gustafs-
son et al. [12, 16, 17] employ a form of abstract execution,
essentially a combination of symbolic execution and abstract
interpretation, using an interval domain. By using the most
accurate setting in its AI framework, the method performs
full path enumeration and does not scale. To make it prac-
tical, similar to [24], path-merging is introduced at different
levels. We now briefly mention our merits in avoiding full
path enumeration while attempting path sensitivity.

Our method first addresses the breadth issue using com-
pounded summarization. For a loop-free program, we guar-
antee to produce the exact bound while avoiding full path
enumeration. For programs with loops, we introduce path-
merging at the end of each loop body. However, we employ a
more powerful abstract domain, i.e. the polyhedral domain.
This obviously results in tighter loop bounds and better de-
tection of infeasible paths. Consequently, our path analysis
will be more precise than path analysis performed by [24,
12, 16, 17]. Another enhancement due to the use of the
polyhedral domain is that we do not have any termination
issue with common programming practices.

Now consider the depth issue, and this is most affected
by loop unrolling. Clearly, analysis must be at least pro-
portional to a concrete execution trace of the program [39].
E.g. the number of states visited by simulating a single-
path1 quadratic program will be at least of quadratic com-
plexity. [24] essentially symbolically executes a fixed number
of paths. Thus its performance is mainly determined by the
length of the longest path. Even so, that technique does not
scale. Similarly, [12, 16, 17] do not address the depth issue.
In contrast, we address the depth challenge, yet again, us-
ing vertically compounded summarizations. This results in
a behavior which we call depth-wise loop compression. This
is innovative. It gives rise for the simulation to be reduced to
linear complexity for some highly nested loops, even though
those loops’ complexities are of much higher order. E.g. we
can derive the exact bound of bubblesort, a quadratic pro-
1Every conditional branch is deterministic.



gram, in a linear number of steps. For further discussion
later, we make the following definitions.

Definition 1. For each program such that its asymptotic
time complexity can be expressed in terms of a single vari-
able, indicating the size of the program instance, that single
variable is called the size parameter of the program2.

Definition 2. We say that our path analysis on program
P is reduced to linear complexity if, in terms of a parameter
size n, (a) the number of states symbolically executed in the
analysis is O(n), whereas (b) the time complexity of P is
worse than O(n).

Our method naturally supports compositional reasoning,
which makes it scale well. Large programs can now be easily
split up into a number of smaller programs and the analyzing
process can be done in a pipelined manner. In the case
that continuation/ending context of a program fragment is
captured precisely, we do not compromise the accuracy of
the analyses for subsequent fragments.

Unlike recent methods [15, 5], we do not infer parametric
bounds for programs. In fact, the outputs we produce are
constant bounds and our method only successfully returns
a bound for program on which the symbolic execution ter-
minates. However, by sticking to constant bounds, we have
the opportunities to discover tighter (often exact) bounds.

Finally, we mention the work [22] from which some con-
ceptual ideas in this paper were originated. There the au-
thors address the resource-constrained shortest path (RCSP)
problem, which is simpler (though NP-hard) than WCET.
In RCSP, the cost of traveling from one node to another
in a weighted graph, subject to path feasibility determined
by some bounds on the resources consumed while traveling,
is minimized. The paper introduces the use of interpola-
tion and witnesses for the RCSP problem, but is limited to
loop-free programs. Furthermore, in RCSP setting, witness
path testing can simply be done by recording the amount of
resources consumed by the witness, and checking that the
adding of the amount to the current consumption does not
result in bound violation. In this paper, the corresponding
problem is far harder.

2. OVERVIEW
We formulate the WCET path analysis of a program over

a symbolic execution tree where each path of the tree is a
succession of nodes, each associated with a program point
in the program. In practice, each program point here is re-
placed by a distinct basic block in the extended CFGs. Each
node i contains a conjunction Ψi = ψ0 ∧ ψi1 ∧ ... ∧ ψik , re-
ferred to either as the incoming context for that node or
its prefix path formula, symbolically representing a set of
states. The edges are labeled with statements executed in
the program. ψ0 is the context of the root/entry node (rep-
resents the knowledge about the input of the program) and
ψi1 , ...,ψik are constraints generated from statements exe-
cuted by the path from the root to the node i. Due to con-
ditional branches and loops, multiple prefix paths in the tree
may come to a same program point but with different sets of
states, i.e. different contexts. Our method performs depth-
first traversal, terminating each path Ψi whenever we are
at an endpoint, or when Ψi is unsatisfiable (i.e. infeasible
path detected). In either case, the algorithm records cer-
tain information about Ψi and backtracks to the next path.
Multiple contexts allow us to tighten our WCET estimation
and prune out unnecessary traversal due to the exclusion of
infeasible paths. Unfortunately, a simple enumeration of all
2In sorting algorithms, it is the size of the input array.

contexts is exponential. In the presence of loops and nested
loops, it is even worse (e.g. a simple unnested loop of 100
iterations with just one conditional branch in its body re-
sults in 2100 contexts at the end). Our algorithm possesses
three key features to mitigate this problem:

BBA

Ā

re-use
re-use

path merging

path merging

one iteration

one iteration

one iteration

(a) (b)
Figure 2: Interpolation and iteration abstraction

Compounded Summarization with Interpolation:
The summarization of a subtree reduces the likelihood of
fully considering other sub-trees with less general incoming
contexts. A summarization contains a timing solution, a
binary relation called abstract transformer to help produce
new continuation contexts when reused, and a condition un-
der which it is reused. For each subtree at node i, reuse
condition is generated by weakening or generalizing the pre-
fix path formula Ψi by using a well-known concept called
interpolant [8]. Essentially, we generalize Ψi as long as we
preserve the unsatisfiability of all the infeasible paths ap-
peared in the analyzed subtree. The algorithm backtracks
and compounds the summarizations computed by the child
states and propagates to ancestors for memoing and reuse.

In Fig. 2(a) we assume that A and B are contexts asso-
ciated to two sibling subtrees, i.e. the nodes associate to
a same program point. For brevity, we will refer to these
subtrees as subtree A and subtree B. W.l.o.g assume that
we have finished analyzing subtree A. In general the two
subtrees possess lots of similarities and we want to oppor-
tunistically avoid full exploration of B. In Fig. 2(a), con-
text B is not subsumed by context A. However, using the
concept of interpolation, context B is subsumed/covered by
interpolant Ā, a generalization of context A. It means that
solutions computed in subtree A can be safely reused in B.
We gain performance since, in general, reusing is less costly
than fully exploring subtree B.

Iteration Abstraction: Every iteration of a loop is ana-
lyzed as a separate subtree, where end points of the loop
body are treated as terminating points of paths. Similar
to [24, 16], we reduce the breadth of the symbolic tree by
merging paths (we use polyhedral domain). This produces
only one continuation context for analysis of subsequent pro-
gram fragment. Furthermore, upon finishing the symbolic
subtree of an iteration, we compute its summarization. In
case reuse happens, analyses for subsequent iterations with
similar behaviors can be quickly deduced (Fig. 2(b)).

Witness Path: The use of summarization with interpo-
lation to avoid full path enumeration is sound, since to-
be-avoided subtrees do not contradict the worst-case path
already computed for the original (to-be-reused) subtree.
However, the original subtree may contain far more paths
than the (to-be-avoided) subtree with a less general context.
That is, the worst-case path estimated so far may be infeasi-
ble in the less general context. Therefore, though sound, the
algorithm may not guarantee the accuracy level we desire.

To remedy the above, we introduce the concept of witness
path. Assume that we analyze the subtree rooted at node
i with the incoming context Ψi = ψ0 ∧ ψi1 ∧ ... ∧ ψik and



find out the worst-case path with the path formula Ψ =
Ψi ∧ ψik+1 ∧ ... ∧ ψil . Our algorithm keeps track for the
suffix worst-case path originated from node i, the formula
ωi = ψik+1 ∧ ... ∧ ψil . We will call ωi a witness path wrt.
the computed timing solution of the subtree rooted at node
i under the incoming context Ψi. A new node j such that i
and j associate to the same program point will not be further
expanded if: (a) its incoming context Ψj is less general than
a previously computed interpolant Ψ̄i, i.e. Ψj |= Ψ̄i, and (b)
the new context demonstrates that the witness path holds,
i.e. Ψj ∧ ωi is satisfiable. Otherwise, we say that node j
cannot be covered and a new expansion for that node is
required. In a loop-free program, witness path ensures that
we achieve exact WCET. However, in presence of loops, due
to path merging, we do not necessarily get the exact WCET.

In summary, our method is based on (1) dynamic com-
pounded summarization with interpolation for reuse, on (2)
iteration abstraction to limit the number of contexts gener-
ated by loops, and on (3) witness path to avoid pessimism.
This can be viewed as an opportunistic method for the ap-
plication of dynamic programming. Though the concepts
of interpolation and summarization have already been well
studied, we believe that having them to work with the se-
mantics of exhaustive loop unrolling and path merging while
attempting path-sensitivity is a significant contribution.

3. PRELIMINARIES
We consider sets of n system variables x1, . . . , xn, denoted
x̃, and a variable k ranging over program points.

Definition 3. A transition is a tuple 〈k, ρ(x̃, x̃′), l〉. ρ
is a constraint over two sets of system variables x̃ and x̃′

and the timing variable; and ρ is induced by the statement
between program points k and l. A transition system is a
finite set of transitions.

〈1〉 c = 0;
〈2〉 if (a > 0) 〈3〉 t = t + 1;
〈4〉 if (b > 0) 〈5〉 t = t + 2;
〈6〉 if (c > 0) 〈7〉 t = t + 3; 〈8〉

(a)
〈1, a′ = a ∧ b′ = b ∧ c′ = 0 ∧ t′ = t, 2〉
〈2, a′ = a ∧ a > 0 ∧ b′ = b ∧ c′ = c ∧ t′ = t, 3〉
〈3, a′ = a ∧ b′ = b ∧ c′ = c ∧ t′ = t + 1, 4〉

...
(b)

Figure 3: A program fragment and its transition system

The variables in a transition may be renamed freely be-
cause their scope is local to the transition. We thus say
that a transition is a variant of another if one is identical
to the other under renaming substitution. We represent an
input program as a set of transition systems, one for each
function of the program. One advantage of representing a
program as a set of transition systems is that it can be ex-
ecuted symbolically in a simple manner. Secondly, as this
representation is general enough, retargeting (e.g. to differ-
ent types of resource bound analyses) is just the matter of
compilation to the designated transition systems. However,
translation from binaries into transition systems, similar to
the CFG reconstruction problem [34], is a non-trivial task.
Fortunately, the task becomes trivial by making use of the
work by Theiling [34]. Consequently, for clarity and sim-
plicity, in the rest of the paper, our path analysis will be
presented on C program and its transition systems.

EXAMPLE 1: Consider the program fragment in Fig. 3(a).
The program points are enclosed in angle brackets. Some of
the transitions are shown in Fig. 3(b). For instance, the

transition 〈1, a′ = a ∧ b′ = b ∧ c′ = 0 ∧ t′ = t, 2〉 repre-
sents that the system state switches from program point 〈1〉
to 〈2〉 and the constraint denotes the reset of c to 0. The
primed versions express the system variables after the corre-
sponding statement execution. Here, the variable of interest
t models the execution time. Note that this variable is al-
ways initialized to 0 and the only operation allowed upon
it is a constant increment. In practice, our method works
on basic blocks and the amount of increment at each point
will be given by some low-level analysis module (e.g. [35]).
The variable t is not used in any other way. For the purpose
of simplicity, in some later examples we just assume every
transition uniformly increments t by 1.

Definition 4. A symbolic state or simply state G is of
the form: 〈k, x̃,φ(x̃)〉 where k is a program point, x̃ is a set
of system variables, and φ is a constraint over some or all
of the variables x̃ and the timing variable.

Definition 5. Let there be a transition system, and let
G = 〈m, x̃,φ(x̃)〉 be a (symbolic) state. Given a transition
〈m, ρ(x̃, x̃′), n〉 in the transition system, a transition step
gives us a new state 〈n, x̃′,φ(x̃) ∧ ρ(x̃, x̃′)〉. We say that
this new state is infeasible if the constraint φ(x̃)∧ρ(x̃, x̃′) is
unsatisfiable.

A transition path is a sequence of symbolic states s.t. two
adjacent states are related by a transition step. An execution
tree is defined from paths in the obvious way.

The construction of correct summarizations (briefly men-
tioned earlier) requires the concept of interpolants [8].

Definition 6. [Interpolant]. If F and G are formulae
such that F |= G, then there exists an interpolant H, denoted
as int(F, G), which is a formula such that F |= H and H |=
G, and each variable of H is a variable of both F and G.

Definition 7. [Summarization of a Block]. Assume that
we analyze a block B from entry point 〈n〉 to exit point 〈m〉
wrt. an incoming context Ψ. Let Θ be the weakest condition
such that if we examine B with Θ as the incoming context,
all infeasible paths discovered by previous analysis are pre-
served. The summarization of B wrt. Ψ is defined as a tuple
[〈n〉, 〈m〉,WCET, ∆,φ,ω], where WCET is the worst case
timing of that block and the corresponding path is witnessed
by ω, abstract transformer ∆ is a binary input-output rela-
tion between state variables at 〈n〉 and 〈m〉, and interpolant
φ is computed as int(Ψ, Θ).

By definition, the abstract transformer ∆ will be the ab-
straction of all feasible paths from 〈n〉 to 〈m〉 (wrt. the in-
coming context). In general, abstract transformer is not a
functional relation. We note here that this concept of ab-
stract transformer is different from the concept of abstract
transition developed in [27]. Here, our abstract transformer
is a safe approximation for the input-output relationship of
a finite tree, whereas in [27], an abstract transition approx-
imates a path (possibly infinite due to the construction of
the closure from the transition relation).

Definition 8. [Summarization of a Program Point]. A
summarization of a program point 〈n〉 is the summarization
of the block from 〈n〉 to 〈m〉 (wrt. the same context), where
〈m〉 is the nearest subsequent program point s.t. 〈m〉 is of the
same nesting level as 〈n〉 and either is (1) an ending point
of the program, (2) an ending point of a function, or (3) an
ending point of some loop body. The information about 〈m〉
is then often omitted.
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Figure 4: Infeasible paths in analyses: without interpolation (a) with interpolation (b)

〈1〉 if (a > 0)
〈2〉 t = t + 1;
〈3〉 else {
〈4〉 t = t + 2;
〈5〉 x = 0;

}
〈6〉 if (x > 0)
〈7〉 t = t + 3;
〈8〉

(a)
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6#2
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a > 0 a ≤ 0
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(b) Longest path = 5
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(c) Longest path = 4
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Figure 5: A straight-line program (a) and its analyses: without witness (b) with witness (c)

4. MOTIVATING EXAMPLES
EXAMPLE 2: Consider the transition system in Fig. 3(b)

and its (full) symbolic execution tree in Fig. 4(a). Node is
labeled P#C where P is the program point and C the context
identifier. We label edge by the statement corresponding
to its endpoint. We represent conditional statement with
diamond, basic block of statements with box, and terminal
node with ellipse. Feasible transition is denoted by arrowed
edge, and infeasible transition by edge with a dotted head.

Without path-sensitivity, the longest path of that tran-
sition system would be 6 since the two branches of each
if-then-else may be executed. However, Fig. 4(a) shows
that the statement at program point 〈7〉 is not executable
since c &> 0. Thus, we infer a tighter bound of 3.

So far, we have illustrated a well-understood benefit of
detecting infeasible paths to tighten the estimate. Fig. 4(b)
depicts a tree computed by our method. The key idea is
to generalize the context of each node (if possible) in order
to increase the likelihood for reuse, thus we avoid full path
enumeration. In this example, our algorithm enlarges the
context of the nodes 4#1 and 6#1 to the formula c ≤ 0 since
this formula is enough to keep the infeasible path detected at
7#1. Then, whenever their siblings 4#2 and 6#2 are visited
with the contexts c = 0 ∧ a ≤ 0 and c = 0 ∧ a > 0 ∧ b ≤
0, respectively, our algorithm tests that 4#2 and 6#2 are
covered by their siblings since those new contexts are less
general (i.e. c = 0 ∧ a ≤ 0 |= c ≤ 0 and c = 0 ∧ a >
0 ∧ b ≤ 0 |= c ≤ 0). In Fig. 4(b) coverage/reuse is denoted
by dashed edge labeled with “covers”.

EXAMPLE 3: Though covering a node (using interpolant)

may reduce the search space while preserving correctness,
it does not necessarily preserve accuracy of the analysis.
Consider the program in Fig. 5(a) and its possible analysis
in Fig. 5(b). The interpolant associated with the subtree
rooted at 6#1 is true since there are no infeasible paths.
Hence 6#1 covers the context of 6#2. Using the same rea-
soning as in previous example, a possible WCET estimate
is 5 by considering the path: 〈1〉 〈4〉 〈5〉 〈6〉 〈7〉 〈8〉 (note
that this path is infeasible though). The estimate is calcu-
lated by adding 2 from the transition 4#1 to 5#1 and 3 from
transition 7#1 to 8#1.

For better precision, we should expand 6#2, shown in
Fig. 5(c). The key observation is that the new subtree rooted
at 6#2 contains an infeasible path if x ≤ 0. This infeasible
path eliminates the potential path from 6#2 to 7#2 which
would have provided a longer (5) but spurious answer. Thus
we are left with a tighter estimate (4) from the path 1#1,
2#1, 3#1, 6#1, 7#1, and 8#1.

The program in Fig. 5(a) illustrates the need to strengthen
the condition of coverage for better accuracy. This is done
by storing at each subtree, a witness path formula ω which
concretely represents the WCET path for that very subtree.
This witness is then used (in conjunction with the inter-
polant) to determine coverage/reuse.

In Fig. 5(c), the context at node 6#2 is φ6#2 ≡ a ≤ 0∧x =
0. The interpolant at 6#1 is φ′

6#1 ≡ true. It is straightforward
to see that φ6#2 |= φ′

6#1. In addition, we test if the witness
still holds, i.e. we are testing whether (ω6#1 ≡ x > 0) ∧ φ6#2

is satisfiable. Since it is unsatisfiable, the algorithm must
explore the node 6#2, thus obtaining a more precise (actually
the exact) bound.



〈0〉 i = 0, n = 4;
〈1〉 while (i < n-1) {
〈2〉 j = 0;
〈3〉 while (j < n-1-i) {
〈4〉 if (*) {
〈5〉 /* swap(a, j, j+1) */

}
〈6〉 j++;
〈7〉

}
〈8〉 i++;
〈9〉

}
〈10〉
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Figure 6: bubblesort program (a) and its analysis (b)

EXAMPLE 4: Consider bubblesort in Fig. 6(a) and its anal-
ysis in Fig. 6(b). We represent a separate computation for an
iteration as a rectangle with double boundaries. Each when
summarized and memoed will be replaced by a single ab-
stract transition denoted as a double-headed arrow. Reuse
of summarization is denoted as a double-bodied arrow with
the program point and previously encountered context at-
tached. For simplicity, in this example, every (non-abstract)
transition increments the timing variable t by 1 (even for
swap function). Furthermore, when talking about contexts,
we use the projected knowledge [20] instead of a long chain
of accumulated constraints (due to the presence of loops).
Witness paths are also omitted as they do not improve ac-
curacy in this example.

We arrive at 2#1 analyzing the first iteration of the outer
loop. From choice point 3#1 we go into the first iteration
of the inner loop. The path 4#1 5#1 6#1 7#1 is analyzed
normally. The summarizations of program point 〈6〉 and
program point 〈5〉 are computed and stored during back-
tracking. It is worth to note that the summarization for
6#1 is [〈6#1〉, 1, j′ = j +1, true] (it is implicitly understood
that i′ = i ∧ n′ = n). In the next visit of 〈6〉, which is 6#2,
we obviously can make use of that summarization.

The summarization for 4#1 then is computed as [〈4#1〉, 3,
j′ = j +1, true]. The WCET is the maximum increment for
the timing variable t by considering both paths originated
from 4#1. The interpolant simply is true as there are no
infeasible paths. The abstract transformer is combined from
the two paths, which is (swap(a, j, j +1)∧ j′ = j +1)∨ (j′ =
j + 1). After simplification (here we ignore the effects on
array a), it yields just j′ = j + 1. The whole iteration is
then replaced by a single transition (double headed arrow)
from 3#1 to 3#2, making use of the abstract transformer
∆ ≡ j < n − 1 − i ∧ j′ = j + 1 (note that the loop entry
condition is added). We continue the analysis of 3#2 with
one abstract context, 〈〈3#2〉, x̃, i = 0 ∧ j = 1 ∧ n = 4〉.
Similarly, we go into the body of the inner loop at 4#2 and
4#3, making use of the previous summarization for 4#1 to
continue the analysis. At 3#4, the attempt going into the
inner loop body fails as an infeasible path is detected.

When we backtrack, by treating double-headed arrows as
normal transitions, we come up a serialization (4 instances)
of compounded summarizations for program point 〈3〉:

[〈3#4〉,3,i′ = i + 1,n − 1 − i ≤ j]
[〈3#3〉,7,i′ = i + 1 ∧ j′ = j + 1,n − 2 − i ≤ j < n − 1 − i]

[〈3#2〉,11,i′ = i + 1 ∧ j′ = j + 2,n − 3− i ≤ j < n − 2− i]
[〈3#1〉,15,i′ = i + 1 ∧ j′ = j + 3,n − 4− i ≤ j < n − 3− i]
The abstract transformers for those summarizations are

computed in a similar manner as how the abstract trans-
former for 4#1 is computed. On the other hand, the inter-
polant for 3#4 is the weakest condition which ensures the
attempt re-entering the loop body at 3#4 fails, i.e. the cor-
responding infeasible path is preserved. The interpolant for
3#3 preserves not only such infeasible path but also the infea-
sible path on the attempt exiting the loop at 3#3. Similarly,
the process goes on for 3#2 and 3#1. Utilizing compounded
summarization saves us from analyzing the inner loop again
in the future exploration of subsequent outer loop’s iter-
ations. Specifically, at 3#5, we reuse the summarization
of 3#2; while, at 3#6, we reuse the summarization of 3#3.
As a result, even though the complexity and the WCET of
bubblesort program is quadratic to n, the number of the inner
loop’s iterations explored by our method is just linear to n.
This behavior remains (for similar programs) even when we
introduce more nesting levels. This fact sets us apart from
other typical simulation approaches (e.g. [16, 24])

5. SYMBOLIC SIMULATION ALGORITHM
In this section, our presented algorithm (shown in Fig. 7
and 8) only deals with loops. Recursive functions can be
treated in a similar manner. Our symbolic simulation al-
gorithm manipulates global memo table Table, which is ini-
tialized to empty. During analysis, new summarizations of
the form [m,WCET , ∆(x̃, x̃′),φ(x̃),ω(x̃)] (as in Def. 8) will
be inserted into Table (line 15).

In constructing compounded summarization, we rely on
two important functions, JoinVertical and JoinHorizontal.
Each of them takes in, as inputs, two summarizations S1

and S2, respectively summarizing two subtrees T1 and T2.
T1 and/or T2 could well be just a single transition. In fact,
even when they are not, we still treat them each as a single
abstract transition, the abstract transformer plays the role
of the transition relation. We first explain these two crucial
functions. Then, we will discuss our algorithm as a whole.
Some implementation details are deferred till section 6.

Compounding Vertically two Summarizations: We
achieve this by JoinVertical in Fig. 8. JoinVertical summa-
rizes a compounded subtree T , where T2 suffixes T1. In
other words, a path π1 in T1 followed by a path π2 in T2



function SS(G,P)
Let G be 〈m, x̃, φ(x̃)〉

〈1〉 if (φ(x̃) ≡ false) return [m,−∞, false, false, false]
〈2〉 if (outgoing(m,P) = ∅) return [m, 0, Id(x̃, x̃′), true, true]
〈3〉 if (endloop(m,P)) return [m, 0, Id(x̃, x̃′), true, true]
〈4〉 S := memoed(G, Table)
〈5〉 if (S (= false) return S endif
〈6〉 if (loop(m,P))
〈7〉 S1 := [m, WCET , ∆(x̃, x̃′), φ(x̃), ω(x̃)]

:= TransStep(G,P, entry(m,P))
〈8〉 if (ω(x̃) ≡ false)
〈9〉 S := JoinHorizontal(S1, TransStep(G,P, exit(m,P)))

else
〈10〉 G′ := 〈m, x̃′, φ(x̃) ∧ ∆(x̃, x̃′)〉
〈11〉 Sn−1 := SS(G′,P)
〈12〉 Sn :=JoinVertical(S1, Sn−1)
〈13〉 S := JoinHorizontal(Sn, TransStep(G,P, exit(m,P)))

endif
else

〈14〉 S := TransStep(G,P, outgoing(m,P))
endif

〈15〉 Table := Table ∪ {S}
〈16〉 return S
end function

Figure 7: Symbolic simulation algorithm

function JoinVertical(S1, S2)
Let S1 be [m, WCET1, ∆1(x̃, x̃′), φ1(x̃), ω1(x̃)]
Let S2 be [n, WCET2, ∆2(x̃

′, x̃′′), φ2(x̃
′), ω2(x̃

′)]
〈17〉 WCET := WCET1 + WCET2
〈18〉 ∆(x̃, x̃′) := ∆1(x̃, x̃′) ∧ ∆2(x̃

′, x̃′′)
〈19〉 φ(x̃) := wp(φ1(x̃), ∆1(x̃, x̃′), φ2(x̃′))
〈20〉 ω(x̃) := ω1(x̃) ∧ ∆1(x̃, x̃′) ∧ ω2(x̃

′)
〈21〉 return [m, WCET , ∆(x̃, x̃′), φ(x̃), ω(x̃)]
end function

function JoinHorizontal(S1, S2)
Let S1 be [m, WCET1, ∆1(x̃, x̃′), φ1(x̃), ω1(x̃)]
Let S2 be [m, WCET2, ∆2(x̃, x̃′), φ2(x̃), ω2(x̃)]

〈22〉 if (WCET1 ≥ WCET2)
〈23〉 WCET := WCET1
〈24〉 ω(x̃) := ω1(x̃)

else
〈25〉 WCET := WCET2
〈26〉 ω(x̃) := ω2(x̃)

endif
〈27〉 ∆(x̃, x̃′) := ∆1(x̃, x̃′) ∨ ∆2(x̃, x̃′)
〈28〉 φ(x̃) := φ1(x̃) ∧ φ2(x̃)
〈29〉 return [m, WCET , ∆(x̃, x̃′), φ(x̃), ω(x̃)]
end function

function TransStep(G,P, TransSet)
Let G be 〈m, x̃, φ(x̃)〉

〈30〉 S := [m, 0, false, true, true]
〈31〉 foreach (〈m, ρ(x̃, x̃′), n〉 ∈ TransSet∧

ρ(x̃, x̃′) → t′ = t + α) do
〈32〉 S1 := SS(〈n, x̃′, φ(x̃) ∧ ρ(x̃, x̃′)〉,P)
〈33〉 S2 := JoinVertical([m, α, ρ(x̃, x̃′), φ(x̃), true], S1)
〈34〉 S := JoinHorizontal(S, S2)

endfor
〈35〉 return S
end function

Figure 8: JoinVertical - JoinHorizontal - TransStep

corresponds a path π (possibly infeasible) in T . The WCET
of T is computed intuitively (line 17) whereas T ’s abstract
transformer is computed as the conjunction of the abstract
transformers of T1 and T2 (line 18). Similar for the case
of T ’s witness path (line 20). The only difference is that,
T1’s witness and T2’s witness are related by the abstract
transformer ∆1 of T1. By treating T1 as an abstract transi-
tion, computing the interpolant for T relies on the function
wp(φ1(x̃), ∆1(x̃, x̃′),φ2(x̃

′)) to produce an interpolant Itp(x̃)
such that φ1(x̃) |= Itp(x̃) and Itp(x̃) ∧ ∆1(x̃, x̃′) |= φ′(x̃′).
This interpolant under-approximates the weakest precondi-
tion of the postcondition φ2(x̃

′) wrt. the transition relation
∆1(x̃, x̃′). That is, the formula ∆1(x̃, x̃′) |= φ2(x̃

′) [4].

Compounding Horizontally two Summarizations: We
achieve this by JoinHorizontal in Fig. 8. JoinHorizontal sum-

marizes a compounded subtree T , where T1 and T2 are sib-
lings. This is the join operation that we often see in other
techniques [24, 12, 16]. The compounded WCET and wit-
ness are computed intuitively (lines 22-26). Preserving all
infeasible paths in T requires preserving infeasible paths in
both T1 and T2 (line 28). The input-output relationship of
T is safely abstracted as the disjunction of the input-output
relationships of T1 and T2 respectively (line 27).

Inputs and Output: The inputs of our algorithm include
a symbolic state G denoting a possible initial context of the
original program P and the transition system of P.

The algorithm performs a depth-first traversal of the ex-
ecution tree of the program rooted at G; summarizations
are collected in a post-order manner. It finally returns a
summarization [m, WCET , ∆(x̃, x̃′),φ(x̃),ω(x̃)], represent-
ing the whole analyzed program.

When to Reuse: Function memoed checks whether a sum-
marization has already been in the Table and can be reused.
Specifically, given a symbolic state G ≡ 〈m, x̃,φ(x̃)〉, we use
memoed(G, Table) to test if there is a tuple S ≡ [m,WCET ,
∆(x̃, x̃′),φ(x̃),ω(x̃)] in Table such that φ(x̃) |= φ(x̃) and
ω(x̃)∧φ(x̃) is satisfiable. If yes, we say that G is reused and
return S. Otherwise, false is returned.

Base Cases: Our algorithm is most naturally implemented
recursively. The function SS handles four base cases. First,
when the context φ(x̃) carried by G is unsatisfiable (line
1), no execution needs to be considered. Note that here
the path-sensitivity plays a role since only (provably) ex-
ecutable paths will be considered. Second, the algorithm
checks if G is a final state (line 2). Here Id(x̃, x̃′) ≡ ∀i ∈
{1, ..., |x̃|} . x̃′[i] = x̃[i], i.e. it represents the transition re-
lation for skip statement. Ending point of a loop is treated
similarly in the third base case (line 3). The last base case,
lines 4-5, is the case that a summarization can be reused.

Expanding to next Program Points: Line 14 depicts
the case when transitions can be taken from the current pro-
gram point m, and m is not a loop starting point. Here we
call TransStep to move recursively to next program points.
The returned value is then passed on. TransStep implements
the traversal of transition steps emanating from m by call-
ing SS recursively and then compounds the returned sum-
marizations into a summarization of m. The arguments of
TransStep are state G, the transition system P, and a set of
outgoing transitions TransSet to be explored.

For each transition in TransSet , TransStep extends the
current state with the transition relation ρ(x̃, x̃′). Resulting
child state is then given as an argument in a recursive call
to SS (line 32). From the summarizations returned by all
the calls to SS, the algorithm computes the compounded
summarization, using JoinVertical and JoinHorizontal. Here,
the first argument to JoinVertical (line 33) indeed represents
a non-abstract transition.

Loop Handling with Compounded Summarization:
Lines 7-13 handle the case when the current program point
is a loop starting point. We assume all loops to be in the
form of structured while loops. In such case, transitions
emanating from a loop starting point can be classified into
two: entry transitions and exit transitions.

Upon encountering a loop, our algorithm attempts to un-
roll it once by calling procedure TransStep to explore the en-
try transitions (line 7). When the returned witness is false, it
understands that we cannot go into the loop body anymore,
thus proceeds to exit branches. The returned summarization
is compounded (using JoinHorizontal) with the summariza-
tion of previous unrolling attempt (line 9). On the contrary,
if some feasible paths found by going into the loop body, we
use the returned abstract transformer to produce a new con-



text. From this context, we recursively call SS to do the rest
of the unrolling process. The returned information is then
compounded (using JoinVertical) with the first unrolling at-
tempt and later compounded (using JoinHorizontal) with the
analysis of the exit branches (line 10-13). Our algorithm can
be reduced to linear complexity because these compounded
summarizations of the inner loop(s) can be reused in later
iteration of the outer loop.

Theorem 1. [Safe WCET Estimate]. Our symbolic sim-
ulation algorithm always produces safe WCET estimates.

6. IMPLEMENTATION DETAILS

6.1 Propagating Witnesses
We refer to line 20 in Fig. 8. As shown, witnesses (ω(x̃))

are constructed from the constraints along the path that
gives rise to WCET. Such path can be very long and naively
record it would be a source of inefficiency. Recall that we use
witnesses to test for feasibility of a solution within memoed
function. That is, given a state 〈m, x̃,φ(x̃)〉 and a wit-
ness ω(x̃), we test if φ(x̃) ∧ ω(x̃) is satisfiable. In general,
the witness ω(x̃) contains other variables, which are dis-
joint from the variables of φ. φ(x̃) ∧ ω(x̃) is satisfiable iff
φ(x̃) ∧ (∃var(ω) − x̃ . ω(x̃)). Therefore, rather than main-
taining ω(x̃), we maintain a formula that is equivalent to
∃var(ω) − x̃ . ω(x̃). CLP(R) projection [20] is useful here.

6.2 Computing the Abstract Transformer
Let us again refer to Fig. 8. The operation in line 18 is sim-

ilar to the manipulation of witness paths and we deal with
it similarly (by projection). However, operation in line 27
requires more attention. In fact, we make use of the polyhe-
dral library [7, 36] to handle this disjunction, computed as
the convex hull of its components. As a result, we only cap-
ture linear input-output relationships of system variables.
Input-output relationships are in general non-linear. For-
tunately, transformations of system variables which affect
the flow of the program are very often just linear and are
captured precisely by the polyhedral domain.

6.3 Computing the Interpolants
Let us consider the following program fragment:

〈0〉 a=1,b=1,y=-1;
〈1〉 if (x<0) 〈2〉 y=a; else 〈3〉 y=b;
〈4〉 if (y>0) 〈5〉 x=1; 〈6〉

There are 2 infeasible paths of the program:
〈0〉a = 1 ∧ b = 1 ∧ y = −1〈1〉x < 0〈2〉y′ = a〈4〉y′ ≤ 0〈6〉
〈0〉a = 1 ∧ b = 1 ∧ y = −1〈1〉x ≥ 0〈3〉y′ = b〈4〉y′ ≤ 0〈6〉

By infeasibility, the state at 〈6〉 for the two paths here is
false. If we use the notion of weakest precondition [9] to gen-
eralize preceding states for the first path we get the weakest
precondition ¬(∃y′ . x < 0∧y′ = a∧y′ ≤ 0) ≡ x < 0 → a > 0
at 〈1〉 for the first path, and ¬(∃y′ . x >= 0 ∧ y′ = b ∧ y′ ≤
0) ≡ x ≥ 0 → b > 0 for the second path. Our issue is how to
approximate the weakest precondition for a path efficiently.
Both paths share a prefix 〈0〉 〈1〉. The desired weakest pre-
condition for 〈1〉, which would maintain the infeasibility of
both paths, is the conjunction of the weakest preconditions
of both paths: (x < 0 → a > 0) ∧ (x ≥ 0 → b > 0) which
is a complex formula involving conjunction and disjunction.
Combining the approximations of various paths efficiently is
another issue. There are two techniques in our system.

Using Constraint Deletion: Given the paths as before,
we remove all constraints that are not necessary to ensure
infeasibility. To ensure the infeasibility of the first path, we

may remove b = 1, y = −1, and x < 0. For the second path,
we may remove a = 1, y = −1 and x ≥ 0. Here, both paths
share the prefix 〈0〉 〈1〉which contains a = 1, b = 1, and
y = −1. Both paths agree on the removal of y = −1, hence
we remove it, obtaining the state a = 1∧ b = 1 at 〈1〉 which
generalizes the original state a = 1∧ b = 1∧y = −1, yet not
as complex as the weakest precondition mentioned above.

Using Polyhedral Library: Given a transition relation
R(x̃, x̃′) on variables x̃ and x̃′, where x̃ represents the pro-
gram variables before the transition and x̃′ represents the
program variables after the transition, and a postcondition
Post(x̃′). A weakest precondition is the formula:

wp(R(x̃, x̃′), P ost(x̃′)) ≡ ∀x̃′ . R(x̃, x̃′) → Post(x̃′)

≡ ¬(¬(∀x̃′ . R(x̃, x̃′) → Post(x̃′)))

≡ ¬(∃x̃′ . R(x̃, x̃′) ∧ ¬Post(x̃′))

which now can be estimated using projection (pre-image
computation). Here we are only allowed to narrow, but not
to widen. We make use of the polyhedral library to ease
this computation. The reason is that the polyhedron library
allows us to represent a Disjunctive Normal Form (DNF) for-
mula as a union of respective polyhedra. And all the needed
operations are closed under this representation (our native
CLP(R) system do not allow us to represent and manipu-
late disjuctive formula directly). The projection to eliminate
those variables x̃′ may be an overestimation. However, this
is safe as the negation of it will be an underestimation of the
weakest precondition.

Return to the same example, the weakest precondition
for the first path is (x ≥ 0 ∨ a > 0). However, in getting
a conjunctive formula as the interpolant, we decide just to
keep a > 0. Similarly, what we will keep for the second path
is just b > 0. As a result, the final interpolant at 〈1〉 will be
(a > 0 ∧ b > 0).

6.4 Determining Exactness of the Results
In WCET path analysis, it is important to be able to au-

tomatically determine whether the returned bound is exact.
In our approach, we only lose some path-sensitivity due to
path merging at the end of each loop iteration. Obviously,
our method produces the exact bound for a single-path pro-
gram. For a loop-free program, our method also computes
the exact bound. For multi-path programs with loops, our
method has an advantage compared to others that we can
easily incorporate the techniques in [33] into our algorithm.
In short, we initially perform data-flow analysis to determine
those control flow merges (called “Destructive Merges” [33])
which may cause loss in the analysis precision. Then our al-
gorithm can automatically conclude that the returned bound
is exact if the input program contains no destructive merges.

7. EXPERIMENTAL EVALUATION
We have selected most difficult benchmark programs from
the Mälardalen WCET group [25], namely bubblesort, expint,
fft1, fir, insertsort, janne complex, ns, nsichneu (part of it),
ud. In addition, tcas, a real life implementation of a safety
critical embedded system, is used to illustrate the perfor-
mance of our method for the case of big loop-free programs.
We also introduce 3 academic programs, namely amortized,
two shapes, non deter to stress more on complicated behav-
iors of loops (as in section 1). Benchmark descriptions and
sizes are briefly summarized in Table 1.

We used an Intel Core 2 Duo @ 2.93Ghz with 2Gb RAM
and built our system upon the CLP(R) [21] and its native
constraint solver, and custom code for reasoning about ar-
rays, thus providing an accurate test for feasibility. Since



Benchmark Size Actual Complexity Symbolic Simulation (SS) State of The Art (IA)
Parameter (SP) WCET (wrt. SP) States Time WCET Exact? States Time WCET

(ms) Manual Auto (ms)

n = 25 1648 135 233 1648 Y N 2873 3087 1648
bubblesort n = 50 6423 O(n2) 260 701 6423 Y N 11373 20363 6423

n = 100 25348 510 2438 25348 Y N 45248 178268 25348
expint NA 859 - 519 8247 859 Y Y 1009 13842 859

n = 8 181 111 446 181 Y Y 218 539 181
n = 16 379 176 927 379 Y Y 461 1313 379

fft1 n = 32 791 O(nlogn) 287 2197 791 Y Y 970 3764 791
n = 64 1661 495 6818 1661 Y Y 2049 14829 1661

fir NA 760 - 108 387 760 Y Y 986 5036 760
n = 25 1120 159 387 1120 Y N 2861 4847 1120

insertsort n = 50 4120 O(n2) 309 1504 4120 Y N 10736 45873 4120
n = 100 15745 609 7542 15745 Y N - timeout -

janne complex NA 133 - 165 491 534 N N * * *
n = 5 2655 63 59 2655 Y Y 5936 4359 2655

ns n = 10 35555 O(n4) 103 116 35555 Y Y 86666 104392 35555
n = 20 522105 183 344 522105 Y Y - timeout -

nsichneu NA 281 - 334 15542 281 Y N - timeout -
ud NA 819 - 487 1137 819 Y Y 992 1802 819

n = 50 394 95 287 394 Y Y 760 649 394
amortized n = 100 792 O(n) 186 1035 792 Y Y 1551 2312 792

n = 200 1590 339 4057 1590 Y Y 3142 10539 1590
n = 50 2199 259 797 2199 Y Y 2874 5068 2199

two shapes n = 100 8149 O(n2) 509 3235 8149 Y Y 10749 42092 8149
n = 200 31299 1009 19839 31299 Y Y - timeout -
n = 25 3904 129 509 3904 Y Y 8255 17941 3904

non deter n = 50 15304 O(n2) 242 1876 15304 Y Y - timeout -
n = 100 60604 467 9253 60604 Y Y - timeout -

tcas NA 99 - 6020 15925 99 Y Y - timeout -

Table 2: Experimental results

Benchmark Description #LC

bubblesort Bubble sort program 128
expint Series expansion for computing an expo-

nential integral function
157

fft1 Fast Fourier Transform using the Cooly-
Turkey algorithm

219

fir Finite impulse response filter (signal pro-
cessing algorithms)

276

insertsort Insertion sort program 92
janne complex Nested loop program with complex flow 64
ns Search in a multi-dimensional array 535
nsichneu Automatically generated code containing

large amounts of if-statements
2000

ud LU decomposition algorithm 147
amortized A program with amortized loop 41
two shapes A nested loop where the inner loop is ex-

ecuted only on even-th iteration of outer
20

non deter A nested loop having inner loop’s counter
incremented nondeterministically in each
iteration (simpler version of Collatz)

20

tcas A traffic collision avoidance system, a
real life safety critical embedded system

400

Table 1: Benchmark programs

the benchmark programs are of small and moderate sizes,
timeout is set at 300 seconds.

As mentioned earlier, the methods in [24, 12, 16] are simi-
lar to our method with only the iteration abstraction feature
(modulo the abstract domain). To have a better compari-
son, both the performances of our full symbolic simulation
method (SS) and its “Iteration Abstraction only” version
(IA) are reported in Table 2. IA closely mimics the perfor-
mance of the methods described in [24, 12, 16], especially in
term of its complexity wrt. the size parameter. In Table 2
we refer to IA as the current state-of-the-art.

In fact, if IA ever returns, its bound will be at least as
good as the bound returned by SS. Due to the employment
of more accurate abstract domain, IA detects more infeasible
paths compared to [24, 12, 16] and therefore its bounds will
be tighter than those computed by [24, 12, 16]. For each
benchmark, IA also visits less states compared to [24, 12,
16]. There are certain programs that cannot be handled by
[24, 12, 16] due to their limited abstract domains, but will
be well handled by our IA (see discussion in [24]). Of course,
it is expensive to maintain a more accurate abstract domain.

In particular, we expect that, IA version might take longer
running time compared to [24, 12, 16] due to calls to the
polyhedral library and the underlying theorem prover for
checking feasibility.

For a loop-free program, SS guarantees to produce the ex-
act bound3. For this kind of program, very importantly, we
demonstrate that by using interpolation, we do not necessi-
tate full enumeration of paths. The performances of SS vs.
IA for tcas illustrate the point.

As shown in Table 2, except for janne complex, SS achieves
the exact timing for each of the benchmarks - indicated
by column Manual. Some of those, current non-brute-force
technique [28] cannot achieve the exact bounds even for cer-
tain loops alone. Except for bubblesort, insersort, nsichneu,
janne complex, not only SS produces the exact bounds but
also it can automatically conclude that it has computed the
exact upper bounds - indicated by column Auto - based on
the technique elaborated in section 6.4.

The program janne complex, firstly introduced in [12], was
designed in such a way that, as long as path merging is
applied at the end of the outer loop body, we overestimate its
WCET. As expected, SS does not produce an exact timing
for this benchmark, however, the result is still comparable
with the method introduced in [12, 16] (the number of inner
loop iterations is estimated at 66). IA, expected to produce
a similar result, however fails because of overflow during a
call to the polyhedral library.

On the other hand, nsichneu is a (multi-path) program
with a single loop having a very large body with lots of
conditional branches. Its purpose is to test the scalability of
an analyzer. Our algorithm does not finish on full nsichneu
program (about 4000 LOC) due to the heavy workload on
the solver for checking infeasible paths. However, on the
attempt to reduce the size of nsichneu, i.e. by reducing the
body of the loop by half, our algorithm then not only runs
in good time, it also computes the exact bound.

SS finishes in less than 20 seconds for every benchmark
3In theory, this is limited by the power of the theorem
prover, since the problem of detecting all infeasible paths
is incomplete. However, in practice with CLP(R) , we have
encountered no problems regarding this matter.



program. It significantly outperforms IA in all benchmarks.
More importantly, for programs of which a size parameter
exists and can be easily modified as an input variable, the
complexity of our SS is reduced to linear (wrt. the size pa-
rameter). In most cases, the number of states visited by SS
is even smaller than the“Actual WCET”, which corresponds
to the maximum number of states in a concrete execution of
the program. IA, therefore methods in [24, 12, 16], clearly
do not possess such properties.

8. OTHER RELATED WORK
WCET path analysis has been the subject of much re-

search, and substantial progress has been made in the area
(see [29, 39] for surveys). Implicit Path Enumeration Tech-
nique (IPET) [23] and its extensions (e.g. [11, 13, 5]) have
been widely used due to its efficiency and simplicity. How-
ever, pure IPET methods have problems with infeasible paths
and flow information stretching across loop-nesting levels.
However, complex flow facts can be expressed using user-
defined constraints [11, 13], but the complexity of solving
the resulting problem is potentially exponential, since the
program is completely unrolled and all flow information is
lifted to a global level. Moreover, the correctness of those
constraints is not verified and the predicted WCET may be
untight or, worse, unsafe. Consequently, in fully automated
techniques [12, 16, 17, 24] where flow information can be
captured precisely, loops are resorted to unrolling.

Considering infeasible paths to increase the accuracy of
WCET path analysis has attracted a lot of attention in
recent years. Nonetheless, all previous works either per-
form partial detection of infeasible paths (e.g. using conflict
sets) [18, 32] or suffer from full path enumeration [26, 2, 31].

SATURN [10] and [30] are general techniques in program
analysis. Ours is related to them since all are summary-
based. However, those works are path-insensitive (“where
precise means meet-over-all-paths” [30]) and cannot be ap-
plied to problems which require a high-level of accuracy such
as WCET prediction. In contrast, our work attempts path-
sensitivity while doing loop summarization. The problem
we address is fundamentally different, and much harder.

Our approach poses a commonality with recent CEGAR-
based model checking approaches [3, 19] in using interpola-
tion concept to eliminate irrelevant facts and optimize the
search space. In CEGAR, when coverage happens, a sub-
tree can be safely pruned. However, in our case, it only
means that the previously analyzed sub-tree (to be exact,
its summarization) can be reused under a new context. The
difference is due to the fact that here we address a dis-
covery and optimization problem whereas CEGAR works
on decision problem. For instance, as a simpler version of
WCET, RCSP (resource-constrained shortest path) by no
means can be easily addressed using CEGAR. Indeed, it has
been argued before that model checking techniques cannot
efficiently deal with WCET analysis [38, 14].

9. CONCLUDING REMARKS
We presented a brute-force path analysis method for in-

ferring and proving tight resource bounds by symbolically
simulating loops. The main novelty is first, the use of in-
terpolation which allows abstract reasoning which in turn
makes the search space manageable; second, the use of wit-
ness paths to curtail the use of the said abstration in cases
where accuracy is likely to be affected; and finally, the use
of compounded summarizations on loop iterations in such
a way that the state space explored by our symbolic simu-
lation can even be smaller than the number of states in a
concrete execution. Using well-known WCET benchmarks,

we showed that our method performs not just well, but often
it obtains exact results.

We have briefly mentioned earlier that our method natu-
rally supports compositional analysis. However, as shown in
Section 7, even without it our algorithm still performs well
with benchmarks under the real-time system domain. Ex-
ploring the usefulness of compositionality property for larger
programs is left as our future work.
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